
TELL: Log Level Suggestions via Modeling
Multi-level Code Block Information

Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, Zhenkai Liang

ISSTA, July 2022

Incidents in Complex Software Systems

2

How to manage the reliability and security of software systems?

Observe System Status
Application Log is a common source that records software running information:
• Provide important indicators for software runtime status
• Monitor important information to recover software behaviors

3

Software
logger Monitoring

MaintenanceDebugging

Application logs facilitate system monitoring, debugging, and maintenance

How to Generate High-quality Logs?

4

LOG.warn("Couldn't find the leader with id = " + id)

• Log level: distinguish code contexts of different importance
• Static text: describe the purposes of logging statements
• Dynamic variable: record run-time execution information

2015-07-29 19:17:57,939 - INFO [/10.10.34.11:3888] - Received connection request /10.10.34.13:58035
2015-07-29 19:17:57,955 - WARN [Worker:188978561024] - Interrupting SendWorker
2015-07-29 19:18:04,430 - WARN [Worker:188978561024] - Interrupted while waiting for message on queue
2015-07-29 19:18:07,748 - WARN [Worker:188978561024] - Interrupting SendWorker
2015-07-29 19:18:07,756 - WARN [Worker:188978561024] - Interrupting SendWorker
…
2015-07-29 19:58:05,166 - WARN [Worker:188978561024] - Couldn’t find the leader with id = 67324

Suitable log levels are necessary to help application log analysis

Log Level Suggestions
Developers set levels as a filter to decide in which levels logs should be recorded

Low levels for critical events will miss some important system signals
High levels for trivial events will generate lots of alarms

5

Trace Debug Info Warn Error

Research Question: Given a logging statement in source code, can we
suggest a suitable log level for it?

Log Level

Previous Work for Log Level Suggestions
Investigate Information of Logged Blocks:
• Which log level should developers choose for a new logging statement? [ESE’17]
• DeepLV: Suggesting log levels using ordinal based neural networks [ICSE’21]

6

Code
Snippet

Splitting
Code Blocks

Analyzing
Logged Blocks

Existing work focuses on features inside one code block (i.e., intra-block information),
ignoring features from its surrounding code blocks (i.e., inter-block information)

What is the key information that benefits log level suggestions?

Our Insight
Key Insight: Logging statements describe program behaviors by recording both
intra-block and inter-block information.
• Aggregating multi-level (i.e., intra- & inter-block) information gives better suggestions

7

2

4

1

3

Intra-block inter-block of block 1
inter-block of block 2

1 2 3
4

1. Encode multi-level code block information into one representation?
2. Distill meaningful information for log level suggestions?

TELL (TeLL Log Levels)

8

Flow of AST (FAST) Construction: Encode multi-level block information
Log Level Suggestions: Extract meaningful information to suggest levels

How to Represent Multi-level Information?
Design choices:
• Log level suggestion levels: basic block level or function level?

Observations:
• A functions reflects complicated program behaviors, resulting in the constituent

logging statements at different levels
• Most logged basic blocks include one logging statement
• The logic of basic block is simple & easy to represent

9

TELL chooses to analyze basic blocks to suggest log levels:
• Use basic blocks to model intra-block information
• Analyze block dependencies to extract inter-block information

Extracting Multi-level Information
• Abstract Syntax Tree (AST) of basic block preserves semantics and syntax
• Control Flow Graph (CFG) and Call Graph (CG) of a program can provide

comprehensive semantics in the context of code blocks

10

block start

modifier findLeader

protected

self

variable type

voteinvocation current

getcurrentVote

localvariable

Abstract Syntax Tree (AST)

Method Start

For Loop

If Condition

Then Block Else Block

If Condition

Then Block Else Block

Method End

Callee Start

Callee End

Inter-procedural Control Flow Graph (ICFG)

CG Edge

Combining Code Representations
Integrate multi-level block information as Flow of AST (FAST) representation
• Intra-block information – Syntactical and semantic features in the AST
• Inter-block information – Contextual features in the ICFG

11

Code fragment
FAST

Hierarchical Block Graph Network (HBGN)
Key Idea: design a hierarchical block graph network (HBGN) to propagate and
aggregate information over the FAST to learn multi-level block features
• Graph neural networks (GNNs) excel at modeling graph-structured data

a) Distill intra-block information to parameterize each code block as a vector
b) Model inter-block information by propagating information from neighbors
c) Suggest log levels with high-quality representations 12

Error

(C)

pooling

pooling

(b)

pooling

for loop

else block

(a)

findLeader start

Distilling Intra-block Information
Distill Intra-block information in an AST
• Symbols and graph structures of AST encode semantics and syntax
• Utilize GNN’s propagation and aggregation mechanism to extract intra-block features
• Apply average pooling to obtain AST’s embedding representation

13

Extract intra-block information in AST with the first GNN

localvariable

type

quorumserver

literal

null

Pooling

AST Representation

Modeling Inter-block Information
Model Inter-block information in an ICFG
• Inter-block information complements AST’s intra-block information and provides

additional clues to log level prediction
• Adopt the second GNN to aggregate neighbor information for ego code blocks and

generate vector representations for logged blocks

14

findLeader start

For Loop

If Condition

Then Block Else Block Block Representation

For Loop obtains information from findLeader start and Else Block

Suggesting Log Levels
Given the vector representation of logged blocks with multi-level code block
information, we convert log level suggestions into a classification problem.

15

Suggesting levels with logged block representations

Log level

logged block 0.64

0.03
0.12

0.05

0.16
trace

warn
info

error

debug

Evaluation
Experiment setup:
• Nine large-scale open-source systems from various domains

• Well-maintained logging statements in these systems as ground truth
• Training, Validation, and Testing sets – proportions: 60%, 20%, 20%

Evaluation aspects:
• How effective is TELL on log level suggestions vs. state-of-the-art?
• To what extent do intra- and inter-block information benefits suggestions?
• How well does TELL suggest log levels across systems?

16

Effectiveness on Log Level Suggestions
Compare TELL with DeepLV in the Accuracy, AUC (Area Under the Curve) and
AOD (Average Ordinal Distance Score) on nine large-scale open-source systems

17

Systems Accuracy AUC AOD
DeepLV TeLL DeepLV TeLL DeepLV TeLL

Cassandra 0.606 0.635 0.842 0.884 0.805 0.812
Elasticsearch 0.577 0.703 0.813 0.905 0.802 0.841
Flink 0.652 0.729 0.851 0.925 0.838 0.863
HBase 0.603 0.707 0.842 0.921 0.817 0.873
JMeter 0.623 0.737 0.839 0.921 0.809 0.872
Kafka 0.518 0.642 0.795 0.888 0.775 0.812
Karaf 0.672 0.750 0.856 0.908 0.816 0.867
Wicket 0.638 0.744 0.850 0.899 0.793 0.856
Zookeeper 0.609 0.746 0.848 0.924 0.820 0.887
Average 0.611 0.710 0.837 0.908 0.808 0.854

TELL achieves higher Accuracy, AUC and AOD than DeepLV in all systems

Study of Multi-level Block Information
Investigate the contribution of intra-block and inter-block information for log
level suggestions
• Intra-block information None/ASTNN/GNN
• Inter-block information None/GNN

18

Both Intra- and inter-block information contributes to log level suggestions

Model Accuracy AUC AOD Time(s)

GNN-NONE 0.517 0.840 0.733 3,459

NONE-GNN 0.602 0.875 0.796 1,780

ASTNN-GNN 0.618 0.878 0.802 8,908

GNN-GNN (HBGN) 0.678 0.893 0.833 4,713

Cross System Suggestions
Evaluate TELL’s effectiveness on cross-system suggestions
• Train HBGN using eight arbitrary systems of the nine systems
• Test HBGN on the remaining system

19

TELL has the potential to predict log levels for new systems

Conclusion
We propose TELL to facilitate log level suggestions:
• Encode intra-block and inter-block information into a joint representation – Flow of

AST (FAST)
• Utilize Hierarchical Block Graph Network (HBGN) to extract information from FAST to

suggest log levels
• Outperform the state-of-the-art in terms of accuracy
• Release source code at: https://github.com/ljiahao/TeLL

Key insights:
• Multi-level code block information benefits log level suggestions
• GNNs excel at extracting useful information from programs

20

https://github.com/ljiahao/TeLL

Thank you!

	TeLL: Log Level Suggestions via Modeling Multi-level Code Block Information
	Incidents in Complex Software Systems
	Observe System Status
	How to Generate High-quality Logs?
	Log Level Suggestions
	Previous Work for Log Level Suggestions
	Our Insight
	TeLL (TeLL Log Levels)
	How to Represent Multi-level Information?
	Extracting Multi-level Information
	Combining Code Representations
	Hierarchical Block Graph Network (HBGN)
	Distilling Intra-block Information
	Modeling Inter-block Information
	Suggesting Log Levels
	Evaluation
	Effectiveness on Log Level Suggestions
	Study of Multi-level Block Information
	Cross System Suggestions
	Conclusion
	Thank you!

