
TeLL: Log Level Suggestions via Modeling Multi-level Code
Block Information

Jiahao Liu
National University of Singapore

Singapore
jiahao99@comp.nus.edu.sg

Jun Zeng
National University of Singapore

Singapore
junzeng@comp.nus.edu.sg

Xiang Wang∗

University of Science and Technology
of China, China

xiangwang@ustc.edu.cn

Kaihang Ji
National University of Singapore

Singapore
kaihang@comp.nus.edu.sg

Zhenkai Liang∗

National University of Singapore
Singapore

liangzk@comp.nus.edu.sg

ABSTRACT

Developers insert logging statements into source code to monitor

system execution, which forms the basis for software debugging and

maintenance. For distinguishing diverse runtime information, each

software log is assigned with a separate verbosity level (e.g., trace

and error). However, choosing an appropriate verbosity level is a

challenging and error-prone task due to the lack of specifications for

log level usages. Prior solutions aim to suggest log levels based on

the code block in which a logging statement resides (i.e., intra-block

features). Such suggestions, however, do not consider information

from surrounding blocks (i.e., inter-block features), which also plays

an important role in revealing logging characteristics.

To address this issue, we combine multiple levels of code block

information (i.e., intra-block and inter-block features) into a joint

graph structure called Flow of Abstract Syntax Tree (FAST). To ex-

plicitly exploit multi-level block features, we design a new neural ar-

chitecture, Hierarchical Block Graph Network (HBGN), on the FAST.

In particular, it leverages graph neural networks to encode both

the intra-block and inter-block features into code block representa-

tions and guide log level suggestions. We implement a prototype

system, TeLL, and evaluate its effectiveness on nine large-scale

software systems. Experimental results showcase TeLL’s advantage

in predicting log levels over the state-of-the-art approaches.

CCS CONCEPTS

· Software and its engineering→ Softwaremaintenance tools;

Maintaining software.

KEYWORDS

Log Level Suggestion, Multi-level Code Block Information, Graph

Neural Network

∗Corresponding authors.

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9379-9/22/07.
https://doi.org/10.1145/3533767.3534379

ACM Reference Format:

Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang. 2022.

TeLL: Log Level Suggestions via Modeling Multi-level Code Block Informa-

tion. In Proceedings of the 31st ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA ’22), July 18ś22, 2022, Virtual, South

Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3533767.

3534379

1 INTRODUCTION

As modern software systems become increasingly complex, explain-

ing the nature of runtime bugs or even simple misconfigurations

is prohibitively difficult. A common practice is to perform soft-

ware execution logging for various maintenance tasks, such as

testing [8, 9, 25], debugging [11, 49, 55], and program comprehen-

sion [34, 35]. Towards this end, developers insert logging statements

into programs to monitor system execution. However, as the vol-

ume of software logs is always overwhelming, log-based program

analysis typically requires tedious manual labor, which undermines

its applications in practice.

To address this problem, developers manually assign verbosity

levels (i.e., trace, debug, info, warn, error, and fatal) to individual log-

ging statements for ranking their importance and severity in investi-

gation. For example, the logging statement LOG.warn("Couldn’t find

the leader with id = " + id) is set at the level of warn, indicating that

this execution status is unexpected but not causing critical issues,

e.g., software crashes. Moreover, log levels provide the capability

to filter information noises in software logs and allow developers

to identify system failures through simple keyword searches, e.g.,

error and fatal. Therefore, choosing appropriate log levels is of

crucial importance because they greatly influence the quality of

underlying logging statements. In the above example, a higher log

level (e.g., fatal) would misguide analysts to a false root cause in

postmortem program analysis. In comparison, a lower log level

(e.g., trace) would crowd out the runtime execution of interest in

the noise of extensive trivial logs.

Unfortunately, manually deciding log levels is a challenging and

error-prone task [22]. Developers often choose suboptimal levels

for logging statements in the first place due to factors such as

the developer’s subjective interpretation of logging principles or

just plain human mistakes. As such, developers typically maintain

logging statements in a trials-and-errors manner [21]. According

to a recent survey, a large portion (specifically, 42.5%) of log-related

issue reports are associated with log levels [27].

This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.

27

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3533767.3534379
https://doi.org/10.1145/3533767.3534379
https://doi.org/10.1145/3533767.3534379

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang

1 protected QuorumServer findLeader() {

2 QuorumServer leaderServer = null;

3 Vote current = self.getCurrentVote();

4 for(QuorumServer s : self.getView().values()) {

5 if(s.id == current.getId()) {

6 s.recreateSocketAddresses();

7 leaderServer = s;

8 break;

9 }

10 }

11 if(leaderServer == null) {

12 LOG.warn("Couldn't find the leader with id = "

+ current.getId());

13 }

14 return leaderServer;

15 }

Block: findLeader Start

Logged Block: warn

(a) Code fragment with warn logging statement.

1 public String getPeersMatching(ServerState state) {

2 StringBuilder hosts = new StringBuilder();

3 for (QuorumPeer p : getPeerList()) {

4 if (p.getPeerState() == state) {

5 hosts.append(String.format("%s:%d,", LOCALADDR,

p.getClientAddress().getPort()));

6 }

7 }

8 LOG.info("getPeersMatching ports are {}", hosts);

9 return hosts.toString();

10 }

Logged Block: info

(b) Code fragment with info logging statement.

Figure 1: Two code fragments with logging statements at dif-

ferent verbosity levels in Zookeeper.

Recently, researchers have started to tackle the problem of auto-

matic log level suggestions [3, 22, 27]. These efforts propose to pre-

dict levels for new logging statements based on logging principles

learned from existing software logs. In particular, prior approaches

focus on logging characteristics from the blocks in which logging

statements reside (i.e., intra-block information). However, log levels

also depend on program behaviors in surrounding blocks [10] (i.e.,

inter-block information). For example, even though two logging

statements have identical intra-block features, they are likely to

be assigned with different levels if they flow into distinct contexts.

Figure 1 shows two logging statements from the same open-source

software system, Zookeeper. Despite sharing similar intra-block

information, they are given different log levels (warn and info) due

to different neighboring blocks. As such, we wish to incorporate

inter-block information as auxiliary supervision to help interpret

the rationale behind logging statements. Unfortunately, this has

been largely overlooked by existing solutions.

In this paper, we aim to leverage multi-level block information

(i.e., intra-block and inter-block features) in a cooperative fashion

to predict log levels. Abstract syntax tree (AST) and inter-procedure

control flow graph (ICFG) are fundamental code abstractions in

program analysis. To be specific, AST is a specialized tree that

preserves syntactic structures of code blocks [4], while ICFG is

a graph notation that extracts control flows among code blocks.

Therefore, we use the AST and ICFG as the basis of intra-block

and inter-block features. To further exploit multi-level block infor-

mation cooperatively, we combine the AST and ICFG into a joint

graph structure named Flow of AST (FAST), where nodes in the

graph denote code blocks attributed with their ASTs, and edges

represent control flow transfers. Thereafter, we develop a new neu-

ral architecture named Hierarchical Block Graph Network (HBGN)

that hierarchically distills useful signals in the FAST to predict log

levels. More specifically, HBGN leverages the information propaga-

tion and aggregation mechanisms in graph neural networks [19] to

explicitly model multiple levels of code block information towards

more effective log level suggestions.

We implement a prototype system, TeLL (Tell Log Levels), which

exploits multi-level block information and performs post-facto log

level suggestions for code blocks with logging statements in an

end-to-end manner. We evaluate TeLL on nine large-scale software

systems and compare it with the state-of-the-art approaches, e.g.,

DeepLV [27]. Experimental results show that: 1) TeLL significantly

improves the accuracy in log level suggestions from 61.1% to 71.0%;

2) intra-block and inter-block information cooperatively contribute

to characterizing log levels; 3) different software systems share

implicit guidelines for log level usages.

In summary, we make the following contributions:

• We are the first to incorporate multi-level block information

into log level characterization. We propose a joint code graph,

Flow of AST, to encode intra-block and inter-block features.

• We design a novel neural architecture, Hierarchical Block Graph

Network, upon the FAST, which explicitly exploits multiple

levels of block information to make suggestions on log levels.

• We implement TeLL and evaluate it on nine real-world systems.

Results show that TeLL predicts log levels with high accuracy,

significantly outperforming state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2 introduces

the background and motivation of our study. Section 3 describes our

approach with full details. Section 4 provides the evaluation metrics

and results. Section 5 discusses the threats to validity. Section 6

summarizes the relatedwork. Finally, Section 7 concludes the paper.

2 BACKGROUND & MOTIVATION

In this section, we use a running example to introduce the problem

of log level suggestions. Then, we analyze the limitations in prior

work to motivate our insight.

2.1 Running Example

Figure 1a presents a code fragment in Zookeeper 1 that contains

a warn logging statement. The member function findLeader at-

tempts to locate the leader node in a quorum by comparing node

IDs, where a log at the level of warnwill be created if the leader can-

not be found. This example shows a typical case where developers

apply verbosity levels to distinguish system running information

of different importance. In particular, the warn logging statement

implies that łan unexpected incident occurs, but the application car-

ries on executionž. If this statement is mistakenly assigned a lower

level (e.g., info), this incident would be buried in the noise of trivial

logs. On the contrary, a severer level (e.g., fatal) would guide de-

velopers to a false system failure, despite the fact that this incident

has been appropriately handled by the remaining code. Therefore,

suggesting suitable levels for logging statements is essential during

software development and maintenance.

Log Level Suggestions. We formulate the problem of suggesting

log levels as classification Ð given a logging statement in source code,

we aim to automatically classify it into a verbosity level. For example,

suppose developers have not decided on a level for the logging

statement on line 12 in Figure 1a. Then, we suggest a suitable level

(e.g., warn) based on the source code around the statement.

1https://github.com/apache/zookeeper/releases/tag/release-3.5.6

28

https://github.com/apache/zookeeper/releases/tag/release-3.5.6

TeLL: Log Level Suggestions via Modeling Multi-level Code Block Information ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

block start

modifier findLeader

protected

self

variable type

voteinvocation current

getcurrentVote

localvariable

(a) Abstract Syntax Tree (findLeader start)

findLeader start

For Loop

If Condition

Then Block Else Block

If Condition

Then Block Else Block

findLeader end

(b) Control Flow Graph

findLeader start

getCurrentVote start

getHostString startgetByName start

findLeader end

recreateSocketAddresses start

getCurrentVote end

getHostString endgetByName end

recreateSocketAddresses end

(c) Call Graph

Figure 2: Different representations of source code for the running example.

2.2 Representations of Code

Multiple representations of code have been developed to reason

about different aspects of programs, and each representation typi-

cally focuses on a unique aspect [48]. Here, based on our running

example, we introduce three classic code representations, i.e., ab-

stract syntax tree, control flow graph and call graph.

Abstract Syntax Tree (AST). AST provides a tree representation

to encode both syntactic and lexical knowledge of source code [53].

For example, Figure 2a shows an AST of the code fragment wrapped

by the red box in Figure 1a, which includes a variety of syntactic

and lexical symbols, e.g., modifier and findLeader. As an AST

captures both syntactic and semantic code features, it has been

widely used in program comprehension tasks, e.g., code clone de-

tection [17], program repair [45], and log placement [25].

Control Flow Graph (CFG). CFG emulates all possible paths that

may be traversed during program execution at the granularity of

basic code blocks. More specifically, it describes the sequence in

which blocks are reached under specific execution conditions. As

illustrated in Figure 2b, nodes of a CFG correspond to basic blocks,

and edges denote their control flows. Generally speaking, CFG

encapsulates the dependencies among code blocks, which reveals

the contextual information (i.e., neighborhood information of code

blocks) in source code[10].

Call Graph (CG). CG depicts the invocation relationships among

functions. Figure 2c depicts a CG built upon our running example,

where nodes are functions (e.g., findLeader and getCurrentVote)

and edges indicate their calling relationships (e.g., findLeader calls

getCurrentVote). Especially, the CFG and CG represent comple-

mentary (intra- and inter-procedure) control flows, which can be

combined as an Inter-procedural Control Flow Graph (ICFG)

to provide a complete control flow view on source code.

2.3 Our Insight

Recent studies primarily characterize logging practices at the level

of code blocks [5, 26, 27, 58]. That is, they partition source code into

blocks and then model the features of logged blocks Ð code blocks

with logging statements Ð to predict log levels. The intuition is

that the rationale behind logging statements can be revealed by un-

derstanding behaviors or states of programs in logged blocks [25].

For example, as logging statements in try-catch blocks are com-

monly developed to monitor program exceptions, most of them are

assigned with high verbosity levels, e.g., warn and error.

More specifically, existing solutions [21, 22, 27] largely make

decisions of log levels based on the code blocks in which logging

statements reside (i.e., intra-block information). Towards this end,

they have investigated open-source software systems and suggested

that syntactical structures from ASTs and log messages (i.e., static

texts in logs) are beneficial for log level suggestions. For exam-

ple, DeepLV [27] extracts syntactical symbols from ASTs and then

combines them with log messages to predict log levels.

However, we discover that intra-block information does not cap-

ture sufficient code features for deciding log levels. Take two logged

blocks from Zookeeper in Figure 1 as examples. Both logged blocks

only include logging statements without additional information of

program behaviors and thus share similar intra-block information Ð

{Expression Statement, Method Invocation, Parameter List, Parameter,

Variable}. Consequently, it is challenging to distinguish their log-

ging characteristics based solely on intra-block information. In the

analysis of inter-block information from Figure 2c, we observe that

most logging statements in the callee functions of findLeader in

Figure 1a (e.g., recreateSocketAddress) are at warn level, which

indicates the high severity of findLeader. On the contrary, when

analyzing neighboring code blocks of getPeersMatching in Fig-

ure 1b, we find no exception processing or failure handling logic.

Therefore, it is straightforward to conclude that these two logged

blocks should be assigned with different log levels Ð the former

logged block should be given a higher log level than the latter due

to its higher severity.

Unfortunately, prior approaches spare limited attention on inter-

block features, making it difficult to suggest log levels when it

requires knowledge from neighboring code blocks. While DeepLV

attempts to enlarge the size of code blocks (i.e., a code block starts

from the start of a function and ends at the target logging statement)

to include additional block contexts, we argue that it still suffers

from the lack of inter-block information. This is because DeepLV

only considers AST structures that do not reflect the dependencies

among code blocks. In particular, under the view of DeepLV, two

logged blocks in Figure 1 should be given the same log level as

they share similar structures: the logging statements located after a

for-each loop with a nested if statement. However, this contradicts

the fact that they are actually at different verbosity levels.

In this work, we propose leveraging intra-block and inter-block

information cooperatively to suggest log levels. Following recent

literature [27, 53], we present the intra-block information as syn-

tactical/lexical symbols and structures in an AST. In terms of the

29

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang

Source Code

Identifying

Basic Blocks

Extracting Intra-

block Features

Extracting Inter-

block Features

Combining

Representations

Suggesting

Log Level

Distilling Intra-

block Information

Modeling Inter-

block Information
Developer

ICFG

AST

FAST

Figure 3: Overview of TeLL

inter-block information, we extract contexts of code blocks by iden-

tifying their neighbors in an ICFG.

To cooperatively model multiple levels of code block features

(i.e., intra-block and inter-block information), we first encode them

into a joint data structure. To do so, we combine the AST and ICFG

into a new code graph called Flow of Abstract Syntax Tree (FAST),

where nodes in the graph are code blocks attributed with their

ASTs, and edges represent control flows.

Afterward, an automated approach is required to gather informa-

tion from the FAST to suggest log levels. Towards this end, we take

inspiration from the recent developments of graph neural networks

(GNNs) in many problem domains [12, 23, 43], e.g., social networks

and recommendations. Since GNNs excel at incorporating graph

structures into the node representations by recursively propagating

information over a graph, we believe GNN should also exhibit well

in extracting multi-level block features given the graph nature of

our FAST. Inspired by this, our objective is to design a specialized

GNN upon the FAST to facilitate log level suggestions. We reach

this by developing a hierarchical neural architecture, Hierarchical

Block Graph Network (HBGN), to model information from ASTs to

ICFGs. Full details will be presented in Section 3.3.

3 APPROACH

3.1 Overview

Figure 3 illustrates the high-level view of TeLL, which receives the

source code of programs and suggests verbosity levels for logging

statements. TeLL provides an end-to-end solution with two phases:

building the Flow of Abstract Syntax Tree (FAST) from source code

and predicting log levels upon the FAST.

Given a program, we first identify code blocks and extract their

abstract syntax trees (ASTs) as the intra-block information. Then,

we build an inter-procedure control flow graph (ICFG) upon code

blocks to capture the inter-block information. Afterward, the AST

and ICFG are merged into a joint graph structure called FAST.

We further adopt a neural architecture called Hierarchical Block

Graph Network (HBGN) to exploit multiple levels of code block

information cooperatively for log level suggestions. The key idea

behind our HBGN is to leverage graph neural networks to propagate

and aggregate information over the FAST to learn multi-level block

features. More specifically, HBGN first parameterizes each code

block as a vector representation (i.e., embedding) by distilling intra-

block information from the block’s AST. Then, HBGN updates the

block embeddings by modeling inter-block information from neigh-

boring blocks. As recent studies discover that logging decisions are

related to not only code structures but log messages [25, 27], we

treat static messages of logging statements as auxiliary information

to further refine the block embeddings.

After obtaining latent representations for code blocks, HBGN

predicts suitable log levels for logged blocks to assist developers in

improving logging practices.

3.2 Building FAST Representation

In this section, we present how to parse the source code of programs

into the FAST representation, which encodes both intra-block and

inter-block information.

Our objective is to suggest log levels at the granularity of code

blocks by following prior studies [21, 22, 27]. To do so, the first

design choice is deciding the granularity of code blocks for extract-

ing their ASTs and ICFG. Intuitively, the granularity can be at the

fine-grained basic block level or coarse-grained function level. Our

analysis of nine large-scale software systems in Table 1 suggests

that most coarse-grained blocks, if not all, consist of complicated

program behaviors, resulting in various logging statements at dif-

ferent levels. In contrast, the logic of a basic block is simple, and

thus we hardly observe such a block containing multiple logging

statements or verbosity levels. In particular, our manual analysis

on systems in Table 1 shows that only 0.8% of logged basic blocks

include more than one log level. Therefore, we choose to analyze

the fine-grained code blocks, namely basic blocks, in this work.

3.2.1 Identifying Basic Blocks. In order to obtain code basic blocks,

we first extract ASTs from source code on the basis of functions.

Then, we traverse each AST in pre-order and identify symbols

related to control flow transfers (e.g., ForStatement) to separate

functions into basic blocks. Take the code fragment in Figure 1a as

an example. By cutting the code at the ForStatement on line 4, we

identify the findLeader start block wrapped with the red box.

3.2.2 Extracting Intra-block and Inter-block Information. As both

intra-block and inter-block information play essential roles in mak-

ing decisions of logging statements, we extract and combine them

into a joint representation for follow-up log level analysis. In par-

ticular, we use the AST built upon each identified block as its

intra-block representation. For example, the two gray boxes in

Figure 4 shows the intra-block information of findLeader start

and If Condition basic blocks. In recent years, AST has been

widely adopted for modeling code blocks because nodes in ASTs

can preserve both semantic and syntactic knowledge of source

code [53]. Specifically, the leaf nodes of ASTs (e.g., leaderServer)

reflect the lexical features that represent latent semantics, while

the non-leaf nodes of ASTs (e.g., ForStatement) capture syntactic

features that represent syntactic structures. It is worth noticing that

we further exclude all AST nodes related to logging guards (e.g.,

if(isTraceEnabled)) to avoid biases in log level suggestions like

previous work [27].

After extracting ASTs to preserve intra-block information, we

construct an ICFG to capture control flow transfers (e.g., branches

and calling relationships) that represent inter-block information. In

general, an ICFG provides a comprehensive view on the context of

code blocks. Following the definition in Section 2.2, we construct

an ICFG by unifying a control flow graph (CFG) and a call graph

(CG). For code blocks identified within a function, we first correlate

30

TeLL: Log Level Suggestions via Modeling Multi-level Code Block Information ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

findLeader start

For Loop

If Condition

Then Block Else Block

If Condition

Then Block Else Block

findLeader end

recreateSocket

Addresses start

recreateSocket

Addresses end

Inter-block Information (ICFG) Intra-bock Information (AST)

block start

modifier localvariable

protected variable type

leaderServer literal QuorumServer

block start

leaderServer

if_condition binary_expression

== null

Figure 4: The Flow of AST built upon the running exam-

ple. ICFG reflects inter-block information and AST encodes

intra-block information.

them based on control flows to constitute a CFG. More specifically,

we connect two blocks if they are correlated by control statements,

e.g., ForStatement. For instance, the BreakClause statement from

line 8 in Figure 1a connects the Then Block and the second If

Condition blocks as shown in Figure 2b. In addition to a CFG rep-

resenting control flows within functions, we further construct a CG

to analyze calling relationships among functions. For this purpose,

we first identify caller functions by finding the AST nodes that initi-

ate function invocations, e.g., Invocation. Then, we extract callee

functions by searching for functions with names and argument

types matching those of caller functions. Afterward, we link caller

and callee functions by creating invocation and return edges, as

illustrated in Figure 2c.

3.2.3 Combining Representations. To cooperatively characterize

log levels, we integrate multiple levels of block information (i.e.,

AST and ICFG) into the FAST. Figure 4 provides an example of a

simplified FAST constructed from the code fragment in Figure 1a.

We differentiate intra-procedural (CFGs) and inter-procedural (CGs)

control flows with directed solid and dashed edges. As can be seen,

FAST hierarchically integrates syntactical and semantic features

from symbols in the AST and contextual features from topology

structures in the ICFG, which provides an informative and compact

representation for the log level suggesting task.

To gain further insights, we use two logged blocks in Figure 1 to

demonstrate how different properties in a FAST can facilitate log

level prediction. At first glance, since both logged blocks contain

only logging statements, it is challenging to determine suitable log

levels based solely on intra-block information. However, by integrat-

ingmulti-level block information, the log levels for these two logged

blocks can be clearly distinguished. In specific, we can easily iden-

tify the severity of the logged block in Figure 1a by incorporating

one of its callee functions, recreateSocketAddresses, in the FAST.

Since most of logging statements in recreateSocketAddresses

are at the warn level, the caller function findLeader should also

be of importance and its failure signifies potential runtime issues.

On the contrary, as for the other logged block in Figure 1b, we

cannot find logging statements with high verbosity levels or any

failure/exception handling semantics throughout the FAST. This

discovery indicates that the second logged block is only informa-

tive and can be ignored on a regular basis without missing critical

runtime information. As a result, it is not difficult to determine that

its log level should be lower than that of the first logged block.

pooling

pooling

findLeader start

for loop

else block

Log MSG

(a) (b)

Error

pooling

(C)

Figure 5: Illustration of our proposed Hierarchical Block

Graph Network. (a), (b) and (c) present intra-block informa-

tion distillation, inter-block information modeling, and log

level suggestions, respectively.

3.3 Learning Multi-level Information

We now present our proposed neural architecture, Hierarchical

Block Graph Network (HBGN), that exploits multiple levels of code

block information in the FAST for log level predictions. Figure 5

illustrates the HBGN’s workflow, which consists of three major

components: 1) distilling the intra-block information, which param-

eterizes each code block as a vector (i.e., embedding) by preserving

the structure of its AST; 2) modeling the inter-block information,

which updates the block embedding by propagating embeddings

from neighboring blocks; 3) suggesting log levels, which yields suit-

able levels for individual logged blocks based on their embeddings.

We will elaborate on these components in the following sections.

3.3.1 Distilling Intra-Block Information. AST is a kind of tree that

captures both syntactic and semantic information within code

blocks [53]. Nonetheless, various structures and symbols (e.g., type

and leaderServer) of ASTs make it challenging to distill the intra-

block information. To address this issue, we propose a graph embed-

ding approach, which takes as input an AST instance in an arbitrary

size and outputs an embedding (i.e., vectorized representation) to

encode both its syntactic and semantic features.

Formally, given an AST instance t with its topology structure, we

first initialize its symbol embeddingsWw ∈ RS×d viaword2vec [33],

where S is the number of unique symbols in the AST and d is the

size of a symbol embedding. For a symbol s ∈ t , we can retrieve its

initial embedding es by:

es =WT
wx , (1)

where x is the one-hot encoding of the symbol s . As such, es ∈ Rd

encodes s’ own characteristics.

Beyond the own characteristics, information of neighboring sym-

bols in ASTs also plays a crucial role in representing the ego symbol.

Taking the symbol vote in Figure 2a as an example, localvariable

→ type → vote describes that there exists a local variable whose

type is vote. Without such a multi-hop relation path, it will be hard

to infer the semantics of the symbol vote. To model such relation

information, TeLL formulates an AST as a graph and applies a

graph neural network [12] (GNN) to recursively propagate symbol

embeddings on the AST. Formally, given a symbol s , the l-th em-

bedding propagation layer updates its embedding by aggregating

the information propagated from neighboring symbols as follows:

e
(l)
s = σ ((e

(l−1)
s | |e

(l−1)
Ns

)W
(l)
α), (2)

31

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang

where e
(l)
s ∈ Rd

(l)
is the embedding of s after stacking l layers,

d(l) presents the embedding size at l-th layer, and e
(0)
s denotes the

word2vec-initialized embedding es ;W
(l)
α ∈ R2d

(l−1)×d (l)
is a train-

able weight matrix to distill useful information from neighboring

symbols; | | is the concatenation operation, and σ is an activation

function set as LeakyReLu [41]. e
(l−1)
Ns

stands for the neural mes-

sages aggregated from s’s neighbors Ns , which is formulated as:

e
(l−1)
Ns

=

∑

s ′∈Ns

e
(l−1)
s ′

√

|Ns ′ | |Ns |
, (3)

where 1/
√

|Ns ′ | |Ns | is the discount factor between two symbols

s and s ′. After applying L embedding propagation layers, we are able

to obtain a series of representations for the symbol s , {e
(0)
s , · · · , e

(L)
s },

which encode different-hops of relation information in the AST. We

hence adopt the layer-aggregation mechanism [47] to concatenate

the representations of s into a single vector, as follows:

e∗s = e
(0)
s | | · · · | |e

(L)
s , (4)

Having established the GNN-based representations for all sym-

bols in an AST t , we would like to have a holistic view of this AST

and encapsulate all syntactic and semantic information into an AST

representation ht . Here we employ a pooling function over these

symbol representations:

ht = ρ([e∗i1 , e
∗
i2
, · · · , e∗iS]), (5)

where ρ is set as the average pooling function to delineate important

features from all symbol representations; e∗i1 , e
∗
i2
, · · · , e∗iS

are the

representations of symbols i1, i2, · · · , iS , respectively.

In summary, TeLL compresses the intra-block information from

an AST instance, obtaining both syntactic and semantic features.

3.3.2 Modeling Inter-Block Information. Inter-block information

complements AST’s intra-block information and provides addi-

tional clues to log level predictions. Therefore, we design the second

GNN, which updates block embeddings obtained from the previous

step by propagating inter-block information in a FAST.

Specifically, TeLL treats each block’s AST in the FAST as an

individual node and then hires another GNN to gather neighboring

blocks’ information to update node embeddings. Formally, given the

AST representation ht of an AST t , TeLL updates its representation

by combining neural messages from its neighboring blocks:

h
(k)
t = σ ((h

(k−1)
t | |

∑

t ′∈Nt

h
(k−1)
t ′

√

|Nt ′ | |Nt |
)W

(k)

β
), (6)

where h
(k)
t ∈ Rd

(k)
is the updated representation of t at the k-

th inter-block propagation layer, and h
(0)
t is initialized as ht in

Equation (5); Nt is the set of blocks directly connecting to t in a

FAST, and W
(k)

β
∈ R2d

(k−1)×d (k)
is a trainable matrix to refine the

neural message passing from the neighboring block t ′.

After K inter-block propagation layers, we obtain multiple up-

dated representations of the AST t Ð {h
(0)
t , · · · ,h

(K)
t }. As different

layers emphasize varying order connections to the AST t , these

representations could capture different levels of block information

in a FAST. Hence, we concatenate them to constitute the final rep-

resentation for t :

h∗t = h
(0)
t | | · · · | |h

(K)
t . (7)

Note that h∗t represents the embedding of not only an AST t

but a code block. As a result, our hierarchical GNNs (HBGN) allow

TeLL to encode multi-level information (i.e., intra-block and inter-

block information) into the representations of code blocks, thus

facilitating the downstream log prediction task.

3.3.3 Suggesting Log Level. In addition to intra-block and inter-

block features, TeLL also incorporates log messages as auxiliary

information to refine code block representations. More formally,

TeLL models the representation qm of log messagem as:

qm = ρ([zi1 , zi2 , · · · , ziN]), (8)

where zi1 , zi2 , · · · , ziN are the word2vec-initialized embeddings

of tokens i1, i2, · · · , iN in log messagem, and N is the number of

unique tokens; ρ is the average pooling function that combines

token embeddings into the representation of log message.

Having modeled multi-level block information and log messages

of code blocks, TeLL’s subsequent task is to suggest suitable log

levels (i.e., trace, info, warn, debug, and error) for logged blocks.

That is, we need to answer the following question: "If node t is one

logged block of interest, which level should we label it?". Here, we

build a classifier upon embeddings of multi-level information h∗t
and log messages qm . Technically, the classifier is a fully connected

layer that converts multi-level information and log messages to

logits over five log levels:

x̂b = (h∗tWt | |qmWp)Wf + bf , (9)

where Wt ∈ R
∑

K

i=0
d (i)×d , Wp ∈ Rd×d and Wf ∈ R2d×5 are the

transformation matrices, and bf is the bias term.

To learn model parameters in HBGN, we cast the task of log

level suggestions as a classification problem. Before designing the

final objective function for classification, we first need to choose

an encoding schema of log levels. The two primary choices are

one-hot encoding and ordinal encoding. Specifically, one-hot en-

coding treats log levels as unrelated classes. For example, info and

warn are encoded as [0, 0, 1, 0, 0] and [0, 0, 0, 1, 0], respectively. Cor-

respondingly, log level suggestion is multi-class classification, and

hence we adopt the softmax-normalized categorical cross-entropy

as HBGN’s objective function.

However, a recent study suggests that log levels have an ordi-

nal nature [27] Ð the levels preserve an order among them. For

example, if a software system is configured to generate info logs,

the system will also enable logging statements at higher levels, e.g.,

warn. Therefore, it would be more reasonable to encode log levels

while preserving their ordinal logging nature, e.g., encoding info

and warn as [1, 1, 1, 0, 0] and [1, 1, 1, 1, 0]. As a result, we convert

log level suggestions from multi-class into binary classification and

then adopt the standard sigmoid-normalized binary cross-entropy

as HBGN’s objective function.

In summary, TeLL adopts HBGN to represent logged blocks with

multi-level information in a FAST and log messages. It then utilizes

the high-quality representations to suggest suitable log levels.

32

TeLL: Log Level Suggestions via Modeling Multi-level Code Block Information ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

4 EVALUATION

In this section, we focus on evaluating the effectiveness of TeLL

in suggesting log levels. In particular, we investigate the following

research questions (RQs):

• RQ1:How does TeLL perform on log level suggestions compared

with the state-of-the-art?

• RQ2: To what extent do diverse design decisions affect the per-

formance of TeLL on log level suggestions?

• RQ3:Howwell doesTeLL characterize log levels across systems?

4.1 Implementation

We use the tree-sitter toolset2 to extract ASTs for Java programs.

The rest of the FAST building (e.g., ICFG construction) is developed

in 3,437 lines of Python code.We implement our HBGNmodel using

TensorFlow [1]. The model is optimized by Adam optimizer [18],

where the batch size and epochs are fixed at 16 and 100. To address

the over-fitting problem, we attach a dropout layer with a dropping

ratio of 0.2. All model parameters are initialized with Kaiming [13].

We adopt word2vec with the skim-gram algorithm [33] to obtain

the embeddings for symbols in AST and tokens in log messages.

To select hyper-parameters in HBGN, we apply a grid search:

the learning rate is tuned amongst {0.001, 0.01, 0.1}; the symbol and

token embedding size is searched in {16, 32, 64}; the number of GNN

layers is tuned amongst {1, 2, 3}. In light of the best performance,

we report experimental results in a setting with the learning rate as

0.1, the embedding size of AST symbols and message tokens as 64,

a 2-layer GNN with hidden dimensions of 64 and 32 for intra-block

information distilling, and a 3-layer GNN with hidden dimensions

as 64, 32, and 16 to model inter-block information. The threshold

for ordinal encoding-based classification is set to 0.5 by following

the way in [27]. Note that the one-hot encoding-based classification

does not require a threshold as it uses softmax to predict the log

level of the greatest probability.

All experiments are performed on a server with Intel Xeon Gold

6248 CPU @ 2.50GHz, 188GB physical memory, and an NVIDIA

Tesla V100 GPU. The OS is Ubuntu 20.04.2 LTS.

4.2 Experiment Setup

Datasets. We collect nine widely used Java software systems from

various domains (e.g., databases and search engines) to evaluate

TeLL’s effectiveness in suggesting log levels. Since these systems

are well-maintained and follow good logging practices, they have

been commonly adopted in recent log-related studies [5, 25ś27].

Table 1 summarizes the log level distribution of these systems. Note

that our statistics are not necessarily the same as existing studies

due to the different granularity of code blocks Ð we analyze the

most fine-grained basic blocks. As the fatal level only occupies

0.04% of all logged blocks, we focus our evaluation on the other five

log levels, i.e., trace, debug, info, warn, error. For each experimental

system, we select 60%, 20%, and 20% of its logged blocks to constitute

the disjoint training, validation, and testing sets. The stratified

random sampling [39] is applied to split logged blocks to ensure

that sampled sets have the same log level distribution.

2https://tree-sitter.github.io/tree-sitter/

Table 1: Log level distribution of nine software systems.

Systems Version LB TB DB IB WB EB FB MIXB

Cassandra 3.11.4 1,317 325 202 280 220 280 0 10(0.8%)

Elasticsearch 7.4.0 5,363 902 1,195 2,048 671 473 3 71(1.3%)

Flink 1.8.2 2,475 35 793 815 455 352 6 19(0.8%)

Hbase 2.2.1 5,146 461 1,153 1,454 1,286 765 0 27(0.5%)

Jmeter 5.3.0 1,762 1 654 295 406 401 0 5(0.3%)

Kafka 2.3.0 1,426 199 414 335 171 293 0 14(1.0%)

Karaf 4.2.9 698 15 152 192 151 185 0 3(0.4%)

Wicket 8.6.1 408 11 167 45 88 96 0 1(0.2%)

Zookeeper 3.5.6 1,496 33 225 599 372 262 0 5(0.3%)

Average Ð 2,232 220 551 674 425 345 1 17(0.8%)

Note: LB is the number of logged blocks. TB, DB, IB, WB, FB and MIXB refer to
the number of Trace, Debug, Info, Warn, Fatal and Mixed level blocks.

Ground Truth. Each logged block is labeled by the level of its con-

stituent logging statement(s). For example, as the logging statement

in Figure 1a is at the warn level, we label the logged block in the

green box as warn. Notice that given a single block with multiple

verbosity levels, we only consider the highest level by following

the ordinal nature of log levels [27].

Metrics. We adopt Accuracy, Area Under the Curve (AUC) and

Average Ordinal Distance Score (AOD) as metrics for evaluating

and comparing the performance of TeLL. In specific, the Accuracy

measures the correctly suggested logged blocks against all logged

blocks. Multi-class AUC, ranging between (0, 1), evaluates the capa-

bility of a model in distinguishing different classes. In this study, the

higher the AUC value is, the better TeLL is at log level classification.

AOD designed by [27] calculates the average distance between the

suggested log level and actual log level in logged blocks, which is

formulated as: AOD =
∑

N

i=1
(1−Dis(ai ,si)/MaxDis(ai))

N , where N is

the number of logged blocks predicted by TeLL, Dis(ai , si) mea-

sures the distance between the actual log level ai and the suggested

log level si (e.g., the distance between warn and error is 1), and

MaxDis(ai) stands for the maximum possible distance of the actual

log level ai (e.g., the maximum distance of error is 4 from trace). In-

tuitively, a higher AOD value indicates a suggested log level closer

to the actual level.

4.3 Improvement over the state-of-the-art

Our first research question is how TeLL performs against the state-

of-the-art work, DeepLV [27], that suggests log levels based on

syntax symbols from ASTs and log messages. To answer this ques-

tion, we use both TeLL and DeepLV to predict log levels on our

studied systems in Table 1. For short, we call DeepLV using syntax

features as DL(Syn), DeepLV using both syntax features and log

messages as DL(Comb), TeLL using multi-level block information

as TL(Mul), and TeLL using both multi-level information and log

messages as TL(Comb) henceforth. Note that because the source

code of DeepLV is not available to us, we quote the results reported

in the original paper to show its effectiveness.

4.3.1 Overall Suggestion Results. Table 2 summarizes the overall

performances of TeLL and DeepLV on nine studied systems. We

observe that TeLL consistently outperforms DeepLV on all systems

regarding Accuracy, AUC, and AOD. More specifically, based on

DeepLV, TeLL achieves an average relative improvement of 9.9%,

7.1%, 3.5% for the Accuracy, AUC and AOD, respectively. The results

demonstrate that TeLL is able to suggest more suitable levels for

33

https://tree-sitter.github.io/tree-sitter/

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang

Table 2: Comparison between TeLL and DeepLV in terms of Accuracy, AUC and AOD.

Systems
Accuracy AUC AOD

DL(Syn) DL(Comb) TL(Mul) TL(Comb) DL(Syn) DL(Comb) TL(Mul) TL(Comb) DL(Syn) DL(Comb) TL(Mul) TL(Comb)

Cassandra 0.537 0.606(+6.9%) 0.625(+8.8%) 0.635(+9.8%) 0.788 0.842(+5.4%) 0.873(+8.5%) 0.884(+9.6%) 0.789 0.805(+1.6%) 0.809(+2.0%) 0.812(+2.3%)

ElasticSearch 0.519 0.577(+5.8%) 0.674(+15.5%) 0.703(+18.4%) 0.779 0.813(+3.4%) 0.891(+11.2%) 0.905(+12.6%) 0.776 0.802(+2.6%) 0.823(+4.7%) 0.841(+6.5%)

Flink 0.525 0.652(+12.7%) 0.687(+16.2%) 0.729(+20.4%) 0.782 0.851(+6.9%) 0.910(+12.8%) 0.925(+14.3%) 0.787 0.838(+5.1%) 0.855(+6.8%) 0.863(+7.6%)

Hbase 0.559 0.603(+4.4%) 0.702(+14.3%) 0.707(+14.8%) 0.831 0.842(+1.1%) 0.905(+7.4%) 0.921(+9.0%) 0.814 0.817(+0.3%) 0.857(+4.3%) 0.873(+5.9%)

Jmeter 0.551 0.623(+7.2%) 0.700(+14.9%) 0.737(+18.6%) 0.835 0.839(+0.4%) 0.899(+6.4%) 0.921(+8.6%) 0.823 0.809(-1.4%) 0.839(+1.6%) 0.872(+4.9%)

Kafka 0.507 0.518(+1.1%) 0.621(+11.4%) 0.642(+13.5%) 0.787 0.795(+0.8%) 0.864(+7.7%) 0.888(+10.1%) 0.769 0.775(+0.6%) 0.778(+0.9%) 0.812(+4.3%)

Karaf 0.565 0.672(+10.7%) 0.700(+13.5%) 0.750(+18.5%) 0.843 0.856(+1.3%) 0.898(+5.5%) 0.908(+6.5%) 0.806 0.816(+1.0%) 0.839(+3.3%) 0.867(+6.1%)

Wicket 0.573 0.638(+6.5%) 0.695(+12.2%) 0.744(+17.1%) 0.831 0.850(+1.9%) 0.897(+6.6%) 0.899(+6.8%) 0.789 0.793(+0.4%) 0.837(+4.8%) 0.856(+6.7%)

Zookeeper 0.528 0.609(+8.1%) 0.696(+16.8%) 0.746(+21.8%) 0.796 0.848(+5.2%) 0.903(+10.7%) 0.924(+12.8%) 0.788 0.820(+3.2%) 0.858(+7.0%) 0.887(+9.9%)

Average 0.540 0.611(+7.0%) 0.678(+13.7%) 0.710(+17.0%) 0.808 0.837(+2.9%) 0.893(+8.5%) 0.908(+10.0%) 0.793 0.808(+1.5%) 0.833(+3.9%) 0.854(+6.0%)

Note: DL(Syn), DL(Comb), TL(Mul) and TL(Comb) stand for DeepLV with syntactic contexts, DeepLV with both syntactic contexts and log messages, TeLL with multi-level
block information, and TeLL with multi-level block information and log messages.

Trace Debug Info Warn Error

A
cc
u
ra
cy

Figure 6: Comparison between TeLL and DeepLV in individ-

ual log levels.

logging statements. Even though a log level is falsely predicted by

TeLL, it would be closer to the actual log level than DeepLV.

By further comparing TL(Mul) and TL(Comb) in Table 2, we

discover that TeLL can suggest log levels with higher accuracy if

incorporating the semantics of log messages into the latent repre-

sentation of logged blocks. This is expected as developers always

insert unique words (e.g., pthread_create fail) into logging state-

ments to briefly explain interesting behaviors or states of programs

(e.g., software failures), which provide additional supervision to

facilitate log level predictions. Another interesting observation is

that even without considering log messages, TeLL, namely TL(Mul),

still outperforms DeepLV with log messages, namely DL(Comb), on

our studied systems. In particular, TL(Mul) improves the average

Accuracy, AUC, and AOD of DL(Comb) by 6.7%, 5.6%, and 2.4%. We

attribute such an improvement to the fact that TeLL adopts HBGN

to explicitly exploit multiple levels of code block information (both

ASTs and ICFGs) from source code. However, DeepLV only focuses

on syntactic structures from ASTs. Therefore, even with the help

of log messages, DeepLV still has a lower accuracy due to the lack

of inter-block information.

4.3.2 Performance on Different Levels. In addition to the overall

performance, a separate accuracy evaluation for individual log

levels is also of importance. This is because various stakeholders

typically focus on logging statements at different levels. For exam-

ple, software developers care more about logs at the debug level

for program debugging tasks. On the contrary, software maintain-

ers are more interested in logs at the warn or error levels as their

daily tasks are to locate unexpected software execution, e.g., faults

and terminations. As a result, it is necessary to explore the effec-

tiveness of TeLL for individual log levels to better understand its

applicability in real-world DevOps scenarios.

Table 3: Average performance of different TeLL variants on

log level suggestions over nine datasets.

Model Encoding Accuracy AUC AOD Time(s)

GNN-NONE Ordinal 0.517 0.840 0.733 3,459

NONE-GNN Ordinal 0.602 0.875 0.796 1,780

ASTNN-GNN Ordinal 0.618 0.878 0.802 8,908

GNN-GNN One-hot 0.652 0.848 0.810 4,688

GNN-GNN(HBGN) Ordinal 0.678 0.893 0.833 4,713

Figure 6 shows the suggestion results on different log levels. As

we can see, TeLL brings substantial improvements over DeepLV,

especially for low log levels, e.g., trace. Specifically, for the trace,

debug, info and warn level, TeLL’s accuracy are 44.3%, 14.9%, 29.4%,

and 5.0% higher than those of DeepLV, respectively. From Figure 6,

we also observe that both TL(Mul) and DL(Comb) achieve high

accuracy on the error level, and DL(Comb) even achieves slightly

higher accuracy. One possible reason is that static messages in

logging statements play a major role in suggesting the error level.

Therefore, by incorporating additional channels of code features

(i.e., inter-block information), we do not obtain higher performance

necessarily. For example, we can easily identify the error level for a

logging statement if finding certain texts in its log messages, e.g.,

crashes, failures, and errors. However, we would like to point out

that without log messages, TL(Mul) greatly outperforms DL(Syn),

which is credited to the benefits of multi-level block information in

log level suggestions.

Result 1: Compared with the state-of-the-art approach,

TeLL significantly improves the accuracy for log level sug-

gestions, especially for low levels, such as trace (44.3%),

debug (14.9%), and info (29.4%).

4.4 Impacts of Different Design Choices

To answer RQ2, we explore the impact of different design choices

in HBGN on the performance of TeLL. Especially, we try different

models to distill intra-block and inter-block information and inves-

tigate two encoding schemas of log levels. To explain the internals

of HBGN, we further visualize code block embeddings.

4.4.1 Ablation Study. The performance of different TeLL variants

are listed in Table 3. For a fair comparison, we report the results

without considering log messages in the code block representation

34

TeLL: Log Level Suggestions via Modeling Multi-level Code Block Information ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

1 public Set<Watcher> materialize(Watcher.Event.KeeperState state,

2 Watcher.Event.EventType type,String clientPath) {

3 ...

4 switch (type) {

5 case None: ...

6 case NodeDataChanged:

7 case NodeCreated: ...

8 case NodeChildrenChanged: ...

9 case NodeDeleted: ...

10 default:

11 String msg = "Unhandled watch event type " + type

12 + " with state " + state + " on path " + clientPath;

13 LOG.error(msg);

14 throw new RuntimeException(msg);

15 }

16 return result;

17}

1 protected void syncWithLeader(long newLeaderZxid) throws Exception {

2 ...

3 switch(qp.getType()) {

4 case Leader.PROPOSAL: ...

5 case Leader.COMMIT:

6 case Leader.COMMITANDACTIVATE: ...

7 case Leader.INFORM:

8 case Leader.INFORMANDACTIVATE: ...

9 case Leader.UPTODATE:

10 LOG.info("Learner received UPTODATE message");

11 ...

12}

Logged Block: error

Logged Block: info

Figure 7: Two code fragments with logged blocks containing

different intra-block information and similar inter-block in-

formation in Zookeeper.

learning. Generally speaking, all our model decisions contribute to

the final performance of log level suggestions, more or less.

More specifically, to estimate the effectiveness of HBGN’s intra-

block information distillation, we compare our GNN model with

two baselines, i.e., NONE (without intra-block information) and

ASTNN [53]. In particular, by no intra-block information, we refer

to initializing the embeddings of ASTs using Kaiming [13] without

any supervision signals. Instead of using a GNN, ASTNN learns

code representations upon ASTs by a recursive neural network.

In Table 3, GNN-GNN (HBGN), ASTNN-GNN, and NONE-GNN

report the results of distilling intra-block information with GNN,

ASTNN, and without intra-block information, respectively. We see

that HBGN performs the best results w.r.t. Accuracy, AUC, and

AOD. NONE-GNN, however, underperforms both ASTNN-GNN

and HBGN. This matches our expectations as it completely ignores

syntax and semantics included in ASTs. While ASTNN captures

the tree structures in ASTs, it does not distill helpful information

from neighboring AST nodes like GNNs. Instead, ASTNN receives

all information propagated from neighbors, introducing noisy in-

formation and generating suboptimal block representations, which

might affect its performance on log level suggestions.

For inter-block information, we compare HBGN with and with-

out our GNN-based modeling on ICFGs. The results are reported by

GNN-NONE and GNN-GNN (HBGN) in Table 3. Again, we observe

that HBGN achieves much better Accuracy/AUC/AOD, improving

16.1%, 5.3%, and 10.0%, respectively. This well justifies our claim

that inter-block information (i.e., block contexts) is essential for

suggesting log levels. Additionally, we discover that NONE-GNN

outperforms GNN-NONE. We hypothesize that this is because con-

textual features in ICFGs are more powerful than syntactic features

in ASTs for characterizing log principles.

Next, we investigate the effectiveness of two basic log level en-

coding schemas, i.e., one-hot encoding and ordinal encoding. By com-

paring GNN-GNN with one-hot and ordinal encodings in Table 3,

we find that HBGN achieves better results using ordinal encoding.

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

LB1 intra-block
LB2 intra-block
LB1 inter-block
LB2 inter-block
LB1 multi-block
LB2 multi-block

(a) LB1 and LB2 embeddings.

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

LB3 intra-block
LB4 intra-block
LB3 inter-block
LB4 inter-block
LB3 multi-block
LB4 multi-block

(b) LB3 and LB4 embeddings.

Figure 8: Visualization of logged block embeddings using t-

SNE. Best view in color.

This is predictable as ordinal encoding preserves the ordinal nature

of log levels. That said, TeLL still reaches promising results with

one-hot encoding.

To further compare the efficiency of different TeLL variants,

we measure the average time cost when training each model for

100 epochs on our studied system. From Table 3, we find that one-

hot encoding and ordinal encoding consume similar training time,

indicating that encoding schemas have a minor influence on TeLL’s

efficiency. Compared with ASTNN, our TeLL is two times faster.

This is because ASTNN requires dynamic batch sizes adjustment

during the model training. We refer interested readers to [53] for

its detailed training procedure.

4.4.2 Explicability of Multi-level Information Modeling. HBGN em-

beds code blocks into a high dimensional (128 dimensions in our

case) vector space, where the distances among vectors encode block

similarities. More specifically, logged blocks far from each other

would like to be assigned different levels, otherwise the same level.

To further understand the internals of HBGN, we visualize the

embeddings of blocks in Figure 8 via the t-SNE technique [40], pro-

jecting high-dimensional embedding spaces into a two-dimensional

plane. In particular, we plot the embeddings of two logged blocks

in Figure 1 (henceforth called LB1 and LB2) and another two logged

blocks in Figure 7 (henceforth called LB3 and LB4). For ease of

presentation, we call embedding spaces derived from intra-block

information, inter-block information, multi-level block information

as intra-block, inter-block, and multi-block spaces.

As illustrated in Figure 8a, LB1 and LB2 are nearby in the intra-

block space but far away from each other in the inter-block space.

This mirrors our intuitive understanding as LB1 and LB2 have simi-

lar intra-block information but different inter-block information.

Additionally, we see that LB1 and LB2 are well separated in the

multi-block space, which suggests different log levels for these

two logged blocks. To gain further insight, we investigate the em-

beddings of LB3 and LB4 that have different intra-block features

but similar inter-block features, as shown in Figure 7. Figure 8b

plots their embeddings, demonstrating that these two logged blocks

should be assigned with different levels due to the considerable

distance between them in the multi-block space.

Result 2: All of our choices in the design of the neural ar-

chitecture HBGN make contributions to the final perfor-

mance of TeLL in log level suggestions.

35

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang

4.5 Cross System Suggestion

In previous sections, we have validated TeLL’s advantage in within-

system log level suggestions: predicting log levels based on logging

practices learned from the same system. We further explore TeLL’s

effectiveness on cross-system suggestions. Our motivation is that

new software systems may not follow good logging practices or

even do not contain enough logged blocks to train a GNN model.

As such, within-system suggestion does not work in their cases.

However, if the logging practices learned from well-maintained

open-source systems can be transferred to other systems, new soft-

ware can also benefit from TeLL. Therefore, in this section, we

explore the potentials of TeLL for cross-system suggestions.

Towards this end, we train HBGN on eight arbitrary systems

in Table 1 and test it with 20% logged blocks randomly sampled

from the remaining system. Note that log level suggestion is a

five-class classification problem, so the probability of an accurate

random guess is 0.2. Figure 9 reports the accuracy of cross-system

suggestions. We see that TeLL produces a promising suggestion

accuracy, significantly outperforming the random guess. This result

reveals that although software systems are designed by different

developers, they share implicit guiding principles in deciding log

levels. We are not surprised to observe that cross-system suggestion

exhibits a lower performance than within-system suggestion. This

is because different software systems most likely follow varying

explicit logging practices. For example, Jmeter rarely sets trace level

for logging statements, while this log level is prevalent in specific

systems such as Cassandra and ElasticSearch.

We further compare TeLL with DeepLV as it also supports cross-

system suggestions. In general, TeLL achieves better accuracy than

DeepLV on all experimental systems. The results demonstrate that

TeLL is able to infer more information shared by different software

systems for log level prediction via explicitly exploring multi-level

block information.

Result 3: Benefiting from cross-system suggestions, TeLL

has the potential to predict log levels for new software

systems that even follow limited logging practices. Be-

sides, we find that different systems share moderate log-

ging principles in determining log levels.

5 THREATS TO VALIDITY

There are five main threats to the validity. First, common to most

learning-driven approaches, TeLL’s effectiveness relies on a high-

quality training set. In particular, our approach presumes that the

source code of a program for training follows good logging prac-

tices. However, since there exist no standard specifications for

log level usages, the quality of logging statements cannot be al-

ways guaranteed. To reduce this threat, we evaluate TeLL using

nine large-scale and widely-used systems across various domains,

which are also commonly adopted as experimental targets in prior

log-related approaches [5, 21, 26, 27]. Second, we conducted our

experiments based on only Java software systems, where the ex-

perimental results may not generalize to systems implemented in

other programming languages. That said, the principle of TeLL

is not limited to a specific programming language. For example,

both intra-block (i.e., AST) and inter-block (i.e., ICFG) information

Cassandra Elastic

search

Flink Karaf Wicket

A
cc
u
ra
cy

KafkaHbase Jmeter Zookeeper

Figure 9: The accuracy of log level suggestions across sys-

tems. CS indicates Cross-System.

used in our approach are general code abstractions. Third, different

hyper-parameters in the HBGN may affect TeLL’s effectiveness.

Following advanced practices from existing studies [16, 43], we

apply the grid search to find the optimal hyper-parameters that

achieve the best accuracy. For the reproduction of our evaluation

results, we present all the hyper-parameter settings in our experi-

ments in Section 4.2. Fourth, TeLL does not guarantee to generate

sound and complete call graphs by matching function names and

arguments. For example, caller-callee relations may be missed due

to dynamic dispatches. Nevertheless, call graph construction itself

is an open research problem [37] and beyond the scope of this study.

We also would like to point out that modularity is one of the guiding

principles in the design of TeLL, which enables advanced uses to

integrate more sophisticated techniques to build more accurate call

graphs. Finally, we use the statistical metrics (i.e., Accuracy, AUC,

and AOD) to evaluate and compare the performance of TeLL with

the state-of-the-art solutions. Unfortunately, whether a suggested

log level is helpful for developers in practice remains unknown,

and we leave it as our future work.

6 RELATED WORK

Application Log Analysis. Application logs have recently at-

tracted increasing attention in software enhancement tasks such

as anomaly detection [15, 28, 36, 54] and fault location [32, 52, 56].

For example, Zhang et al. [54] propose LogRobust to detect system

anomalies based on unstable log sequences. Lu et al. [32] hunt con-

currency bugs in the cloud via log-mining. Zhao et al. [56] develop a

non-intrusive tool to profile the performance of distributed systems

using the unstructured logs. The primary idea of these approaches

is to leverage application logs to facilitate łafter-the-factž analysis.

As a result, their performances heavily rely on the quality of log-

ging statements in source code. This work aims to identify suitable

levels for logging statements to improve the overall log quality,

which benefits various log-based software engineering tasks.

Studies on Logging Practices.Due to the advances of logs in soft-

ware engineering, plenty of research efforts [5ś7, 11, 26, 38, 50, 57]

have been made to study logging practices. Yuan et al. [50] and

Chen et al. [7] first characterize the importance of logs in software

debugging and maintenance through quantitative analysis. Chen

et al. [5, 6] summarize five categories of common logging mistakes

and analyze the usage of logging utilities in Java code. Inspired by

these fundamental studies, extensive literature exists on improving

36

TeLL: Log Level Suggestions via Modeling Multi-level Code Block Information ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

logging practices. Current logging improving approaches can be

roughly categorized into two directions, where to log [25, 55, 58]

andwhat to log [14, 27, 31, 51]. Research onwhere to log aims to sug-

gest the most suitable locations for logging statements. Specifically,

Zhao et al. [55] measure the entropy of a program to determine the

optimal log positions. Elsewhere in the literature, Li et al. [25] and

Zhu et al. [58] leverage intra-block information of logged blocks

to predict log positions. In the other direction, studying what to

log, existing work analyzes what message, variable, and level to log,

based on the components of a logging statement. In specific, He

et al. [14] explore the potential of natural language processing in

predicting log messages. Yuan et al. [51] and Liu et al. [31] propose

to determine which variable to log. Besides, Li et al. [22, 27] aim to

suggest log levels with intra-block information. In this paper, we

propose TeLL to automatically incorporate multi-level code block

information to predict log levels, significantly outperforming the

state-of-the-art approach [27].

GNNs in Software Engineering.Graph Neural Networks (GNNs)

are widely used in many problem domains due to their superiority

in representation learning of graph data [12, 19, 23, 43, 46]. Recently,

several studies propose exploiting GNNs in software engineering

tasks, such as code clone detection [42], code summarization [20,

30], variable name prediction [2], and program representation [24,

29, 44]. In particular, Wang et al. [42] applies GNNs to capture

syntax and semantic structures in ASTs and then perform code

clone detection on a pair of code fragments. Allamanis et al. [2]

utilize GNNs to learn program representations for variable naming

andmisuse. LeClair et al. [20] adopt GNNs to automatically generate

natural language descriptions of source code. To the best of our

knowledge, we are the first to explore the potential of GNNs in

modeling multi-level code block information for log practices.

7 CONCLUSION

In this work, we explore the potential of different levels of code

block information in log level suggestions. Towards this end, we

first extract intra-block and inter-block block information from

the AST and ICFG as a joint graph structure termed Flow of AST

(FAST). Then, we design a new neural architecture, Hierarchical

Block Graph Network, upon the FAST to model multi-level block

information in a cooperative fashion. In this way, both intra-block

and inter-block information have been explicitly incorporated into

characterizing blocks with logging statements and predicting their

levels. We conduct extensive experiments on nine large-scale soft-

ware systems. The experimental results show that our approach

outperforms the state-of-the-art approaches by large margins re-

garding log level suggestion accuracy.

To facilitate follow-up research, we release the source code of

TeLL at https://github.com/ljiahao/TeLL.

ACKNOWLEDGMENTS

We thank Yuancheng Jiang, Yinfang Chen and the anonymous

reviewers for their valuable comments. This research is supported

by the National Research Foundation, Singapore under its Industry

Alignment Fund - Pre-positioning (IAF-PP) Funding Initiative and

CCCD Key Lab of Ministry of Culture and Tourism, China. Any

opinions, findings and conclusions or recommendations expressed

in this material are those of the author(s) and do not reflect the

views of National Research Foundation, Singapore.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, et al. 2016. Tensorflow: A system for large-scale machine learning. In
12th {USENIX} symposium on operating systems design and implementation
(OSDI). 265ś283. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/abadi

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning
to Represent Programs with Graphs. In International Conference on Learning
Representations (ICLR). https://openreview.net/forum?id=BJOFETxR-

[3] Han Anu, Jie Chen, Wenchang Shi, Jianwei Hou, Bin Liang, and Bo Qin. 2019. An
approach to recommendation of verbosity log levels based on logging intention.
In 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 125ś134. https://doi.org/10.1109/ICSME.2019.00022

[4] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lor-
raine Bier. 1998. Clone detection using abstract syntax trees. In Proceedings.
International Conference on Software Maintenance (ICSM). 368ś377. https:
//doi.org/10.1109/ICSM.1998.738528

[5] Boyuan Chen and Zhen Ming Jiang. 2017. Characterizing and detecting anti-
patterns in the logging code. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). 71ś81. https://doi.org/10.1109/ICSE.2017.15

[6] Boyuan Chen and Zhen Ming Jiang. 2020. Studying the use of Java logging
utilities in the wild. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). 397ś408. https://doi.org/10.1145/3377811.3380408

[7] Boyuan Chen and ZhenMing Jack Jiang. 2017. Characterizing logging practices in
Java-based open source software projectsśa replication study in Apache Software
Foundation. Empirical Software Engineering (2017), 330ś374. https://doi.org/10.
1007/s10664-016-9429-5

[8] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming Jiang. 2018. An
automated approach to estimating code coverage measures via execution logs. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE). 305ś316. https://doi.org/10.1145/3238147.3238214

[9] Tse-Hsun Chen, Mark D Syer, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan,
Mohamed Nasser, and Parminder Flora. 2017. Analytics-driven load testing:
An industrial experience report on load testing of large-scale systems. In 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP). https://doi.org/10.1109/ICSE-SEIP.2017.26

[10] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional code clone detection with syntax and semantics fusion learning. In
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA). 516ś527. https://doi.org/10.1145/3395363.3397362

[11] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. 2014. Where do developers log? an empirical
study on logging practices in industry. In Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE). 24ś33. https://doi.org/
10.1145/2591062.2591175

[12] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS). 1025ś1035. https://proceedings.
neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision (ICCV).
1026ś1034. https://doi.org/10.1109/ICCV.2015.123

[14] Pinjia He, Zhuangbin Chen, Shilin He, and Michael R Lyu. 2018. Characterizing
the natural language descriptions in software logging statements. In 2018 33rd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
178ś189. https://doi.org/10.1145/3238147.3238193

[15] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 60ś70. https://doi.org/10.1145/3236024.3236083

[16] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the 40th international ACM SIGIR conference
on Research and development in Information Retrieval (SIGIR). https://doi.org/10.
1145/3077136.3080777

[17] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In 29th
International Conference on Software Engineering (ICSE). 96ś105. https://doi.org/
10.1109/ICSE.2007.30

[18] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In International Conference on Learning Representations (ICLR).
http://arxiv.org/abs/1412.6980

37

https://github.com/ljiahao/TeLL
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.1109/ICSME.2019.00022
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1145/3377811.3380408
https://doi.org/10.1007/s10664-016-9429-5
https://doi.org/10.1007/s10664-016-9429-5
https://doi.org/10.1145/3238147.3238214
https://doi.org/10.1109/ICSE-SEIP.2017.26
https://doi.org/10.1145/3395363.3397362
https://doi.org/10.1145/2591062.2591175
https://doi.org/10.1145/2591062.2591175
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1145/3238147.3238193
https://doi.org/10.1145/3236024.3236083
https://doi.org/10.1145/3077136.3080777
https://doi.org/10.1145/3077136.3080777
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1109/ICSE.2007.30
http://arxiv.org/abs/1412.6980

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang

[19] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR). https://openreview.net/forum?id=SJU4ayYgl

[20] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Im-
proved code summarization via a graph neural network. In Proceedings of
the 28th International Conference on Program Comprehension (ICPC). 184ś195.
https://doi.org/10.1145/3387904.3389268

[21] Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed E Hassan.
2020. A qualitative study of the benefits and costs of logging from developers’
perspectives. IEEE Transactions on Software Engineering (2020). https://doi.org/
10.1109/TSE.2020.2970422

[22] Heng Li, Weiyi Shang, and Ahmed E Hassan. 2017. Which log level should
developers choose for a new logging statement? Empirical Software Engineering
(2017), 1684ś1716. https://doi.org/10.1007/s10664-016-9456-2

[23] Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang.
2019. Semi-supervised graph classification: A hierarchical graph perspective.
In The World Wide Web Conference (WWW). 972ś982. https://doi.org/10.1145/
3308558.3313461

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated
graph sequence neural networks. In International Conference on Learning Repre-
sentations (ICLR). http://arxiv.org/abs/1511.05493

[25] Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. 2020. Where shall we log?
studying and suggesting logging locations in code blocks. In 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 361ś372. https:
//doi.org/10.1145/3324884.3416636

[26] Zhenhao Li, Tse-Hsun Chen, Jinqiu Yang, and Weiyi Shang. 2019. DLFinder:
characterizing and detecting duplicate logging code smells. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). 152ś163. https:
//doi.org/10.1109/ICSE.2019.00032

[27] Zhenhao Li, Heng Li, Tse-Hsun Peter Chen, and Weiyi Shang. 2021. DeepLV:
Suggesting Log Levels Using Ordinal Based Neural Networks. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 1461ś1472. https:
//doi.org/10.1109/ICSE43902.2021.00131

[28] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.
2019. Log2vec: a heterogeneous graph embedding based approach for detecting
cyber threats within enterprise. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS). 1777ś1794. https://doi.org/10.
1145/3319535.3363224

[29] Shangqing Liu. 2020. A Unified Framework to Learn Program Semantics with
Graph Neural Networks. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE). https://doi.org/10.1145/3324884.3418924

[30] Shangqing Liu, Yu Chen, Xiaofei Xie, Jingkai Siow, and Yang Liu. 2021. Retrieval-
augmented generation for code summarization via hybrid {gnn}. In International
Conference on Learning Representations (ICLR). https://openreview.net/forum?
id=zv-typ1gPxA

[31] Zhongxin Liu, Xin Xia, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. 2019. Which variables should i log? IEEE Transactions on Software
Engineering (2019). https://doi.org/10.1109/TSE.2019.2941943

[32] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. 2018. Cloudraid: hunting concurrency
bugs in the cloud via log-mining. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). 3ś14. https://doi.org/10.1145/3236024.3236071

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. 2013. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing sys-
tems (NIPS). 3111ś3119. https://proceedings.neurips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[34] Meiyappan Nagappan, Kesheng Wu, and Mladen A Vouk. 2009. Efficiently
extracting operational profiles from execution logs using suffix arrays. In 2009
20th International Symposium on Software Reliability Engineering (ISSRE). 41ś50.
https://doi.org/10.1109/ISSRE.2009.23

[35] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured compara-
tive analysis of systems logs to diagnose performance problems. In 9th {USENIX}
Symposium on Networked Systems Design and Implementation (NSDI). https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/nagaraj

[36] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta, and Subhra-
jit Bhattacharya. 2016. Anomaly detection using program control flow graph
mining from execution logs. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD). 215ś224.
https://doi.org/10.1145/2939672.2939712

[37] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Mùller. 2021. Mod-
ular call graph construction for security scanning of Node. js applications. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 29ś41. https://doi.org/10.1145/3460319.3464836

[38] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
2015. Industry practices and event logging: Assessment of a critical software
development process. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE). 169ś178. https://doi.org/10.1109/ICSE.2015.145

[39] Heidar Pirzadeh, Sara Shanian, Abdelwahab Hamou-Lhadj, and Ali Mehrabian.
2011. The concept of stratified sampling of execution traces. In 2011 IEEE 19th
International Conference on Program Comprehension (ICPC). 225ś226. https:
//doi.org/10.1109/ICPC.2011.17

[40] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research (2008), 2579ś2605. http://jmlr.org/
papers/v9/vandermaaten08a.html

[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations (ICLR). https://openreview.net/forum?id=
rJXMpikCZ

[42] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones
with graph neural network and flow-augmented abstract syntax tree. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 261ś271. https://doi.org/10.1109/SANER48275.2020.9054857

[43] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval (SIGIR).
165ś174. https://doi.org/10.1145/3331184.3331267

[44] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. 2020. Learning semantic
program embeddings with graph interval neural network. Proceedings of the
ACM on Programming Languages (2020), 1ś27. https://doi.org/10.1145/3428205

[45] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
2009. Automatically finding patches using genetic programming. In 2009 IEEE
31st International Conference on Software Engineering (ICSE). 364ś374. https:
//doi.org/10.1109/ICSE.2009.5070536

[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions (ICLR). https://openreview.net/forum?id=ryGs6iA5Km

[47] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In International Conference on Machine Learn-
ing (ICML). 5453ś5462. https://proceedings.mlr.press/v80/xu18c.html

[48] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium
on Security and Privacy (S&P). 590ś604. https://doi.org/10.1109/SP.2014.44

[49] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. Sherlog: error diagnosis by connecting clues from run-time
logs. In Proceedings of the fifteenth International Conference on Architectural
support for programming languages and operating systems (ASPLOS). 143ś154.
https://doi.org/10.1145/1736020.1736038

[50] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterizing logging prac-
tices in open-source software. In 2012 34th International Conference on Software
Engineering (ICSE). 102ś112. https://doi.org/10.1109/ICSE.2012.6227202

[51] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2012.
Improving software diagnosability via log enhancement. ACM Transactions on
Computer Systems (TOCS) (2012), 1ś28. https://doi.org/10.1145/2110356.2110360

[52] Tarannum Shaila Zaman, Xue Han, and Tingting Yu. 2019. SCMiner: localiz-
ing system-level concurrency faults from large system call traces. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
515ś526. https://doi.org/10.1109/ASE.2019.00055

[53] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 783ś794. https://doi.org/10.1109/ICSE.2019.00086

[54] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). 807ś817. https://doi.org/10.
1145/3338906.3338931

[55] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan
Zhou. 2017. Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP). https://doi.org/10.1145/3132747.3132778

[56] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. 2016. Non-
intrusive performance profiling for entire software stacks based on the flow
reconstruction principle. In 12th {USENIX} Symposium on Operating Systems
Design and Implementation (OSDI). 603ś618. https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/zhao

[57] Chen Zhi, Jianwei Yin, Shuiguang Deng, Maoxin Ye, Min Fu, and Tao Xie. 2019.
An exploratory study of logging configuration practice in Java. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 459ś
469. https://doi.org/10.1109/ICSME.2019.00079

[58] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R Lyu, and Dong-
mei Zhang. 2015. Learning to log: Helping developers make informed logging
decisions. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering (ICSE). 415ś425. https://doi.org/10.1109/ICSE.2015.60

38

https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1109/TSE.2020.2970422
https://doi.org/10.1109/TSE.2020.2970422
https://doi.org/10.1007/s10664-016-9456-2
https://doi.org/10.1145/3308558.3313461
https://doi.org/10.1145/3308558.3313461
http://arxiv.org/abs/1511.05493
https://doi.org/10.1145/3324884.3416636
https://doi.org/10.1145/3324884.3416636
https://doi.org/10.1109/ICSE.2019.00032
https://doi.org/10.1109/ICSE.2019.00032
https://doi.org/10.1109/ICSE43902.2021.00131
https://doi.org/10.1109/ICSE43902.2021.00131
https://doi.org/10.1145/3319535.3363224
https://doi.org/10.1145/3319535.3363224
https://doi.org/10.1145/3324884.3418924
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1145/3236024.3236071
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1109/ISSRE.2009.23
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/nagaraj
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/nagaraj
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1109/ICSE.2015.145
https://doi.org/10.1109/ICPC.2011.17
https://doi.org/10.1109/ICPC.2011.17
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.1145/3331184.3331267
https://doi.org/10.1145/3428205
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v80/xu18c.html
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1145/1736020.1736038
https://doi.org/10.1109/ICSE.2012.6227202
https://doi.org/10.1145/2110356.2110360
https://doi.org/10.1109/ASE.2019.00055
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3132747.3132778
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://doi.org/10.1109/ICSME.2019.00079
https://doi.org/10.1109/ICSE.2015.60

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Running Example
	2.2 Representations of Code
	2.3 Our Insight

	3 Approach
	3.1 Overview
	3.2 Building FAST Representation
	3.3 Learning Multi-level Information

	4 Evaluation
	4.1 Implementation
	4.2 Experiment Setup
	4.3 Improvement over the state-of-the-art
	4.4 Impacts of Different Design Choices
	4.5 Cross System Suggestion

	5 Threats to validity
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

