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Abstract—Detecting code functional similarity forms the basis
of various software engineering tasks. However, the detection
is challenging as functionally similar code fragments can be
implemented differently, e.g., with irrelevant syntax. Recent stud-
ies incorporate program dependencies as semantics to identify
syntactically different yet semantically similar programs, but
they often focus only on local neighborhoods (e.g., one-hop
dependencies), limiting the expressiveness of program semantics
in modeling functionalities. In this paper, we present TAILOR
that explicitly exploits deep graph-structured code features for
functional similarity detection. Given source-level programs,
TAILOR first represents them into code property graphs (CPGs)
— which combine abstract syntax trees, control flow graphs,
and data flow graphs — to collectively reason about program
syntax and semantics. Then, TAILOR learns representations of
CPGs by applying a CPG-based neural network (CPGNN) to
iteratively propagate information on them. It improves over
prior work on code representation learning through a new graph
neural network (GNN) tailored to CPG structures instead of the
off-the-shelf GNNs used previously. We systematically evaluate
TAILOR on C and Java programs using two public benchmarks.
Experimental results show that TAILOR outperforms the state-of-
the-art approaches, achieving 99.8% and 99.9% F-scores in code
clone detection and 98.3% accuracy in source code classification.

I. INTRODUCTION

Detecting code functional similarity serves as the corner-
stone of various software engineering tasks, such as code
clone detection [1], [2], source code classification [3], [4],
and vulnerability discovery [5], [6]. Recently, intensive re-
search efforts have been invested in comprehending source-
level program functionalities [7]. A common paradigm is to
extract latent features (a.k.a., embeddings) to represent code
fragments and calculate distances among embedding vectors to
measure functional similarities. Based on how code fragments
are used, existing solutions generally fall into three categories:
token-based, tree-based, and graph-based methods.

Token-based methods treat source code as natural language
texts and model code fragments by parsing them into token
sequences [8]–[10]. However, due to the lack of program
structures, these solutions fail to recognize textually different
yet structurally similar code fragments. For example, if only
comparing token sequences, a = b + c and a = c + b are
not considered equivalent, even though they share identical
syntactical structure. To integrate structural knowledge em-
bedded in code fragments, tree-based methods detect program
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similarities in the form of abstract syntax tree (AST) [11]–
[15]. Nevertheless, AST is agnostic to program semantics (e.g.,
control flow), limiting its ability to identify semantically simi-
lar programs with different syntax. As a remedy, graph-based
methods build program dependency graphs (PDGs) to incor-
porate control/data dependencies, predicting semantically sim-
ilar functionalities by discovering isomorphic subgraphs [16].
While achieving higher performances, they are bounded by
the low efficiency of graph isomorphism detection [17]. Al-
ternatively, recent work [18], [19] transforms the problem of
finding isomorphic subgraphs into matching graph patterns.
However, these techniques often focus on local neighborhoods
(e.g., one-hop neighbors in PDGs), limiting the expressiveness
of program semantics (e.g., multi-hop control dependencies).
For example, DeepSim [18] encodes control/data flow into
an adjacency matrix, but this matrix only describes first-order
dependency between two variables.

To overcome the limitations above, we aim to develop a
new approach that can exploit graph-structured code features
explicitly, effectively, and efficiently. Towards this end, we take
inspiration from the recent advances of graph neural networks
(GNNs) in many domains such as social networks [20],
recommendations [21], and security [22]. The key of GNNs is
to learn graph structures by propagating node representations
along graph paths. This leads to the expressive modeling of
multi-hop neighbors, injecting structural knowledge into graph
representation learning. Intuitively, considering the graph na-
ture of code features (e.g., control flow graph), GNNs are
beneficial to the reasoning of program semantics toward more
effective functional similarity detection. Moreover, GNNs also
excel at efficiency, with a runtime complexity linear to the size
of input graphs.

Various approaches have been proposed to explore the po-
tential of GNNs in program analysis. For example, Allamanis
et al. [23] adopt the gated graph neural network (GGNN) [24]
to predict the name of a variable given its usage. Similarly, FA-
AST [25] also leverages the GGNN but for the task of code
clone detection. While promising, these approaches share a
major drawback — their learning models are directly inherited
from off-the-shelf GNNs without any justification or customiza-
tion. Unfortunately, existing GNNs, originally not designed
for program analysis, likely include operations not necessarily
useful for modeling program functionality, which not only
negatively increases the training difficulty but degrades GNN’s
effectiveness. For example, GGNN applies a recurrent neural



network (RNN) to all nodes in a graph, requiring storing
intermediate states of nodes in the memory, making it not
scale well to large programs [26]. More importantly, we
empirically find that replacing the RNN with a much simpler
weighted summation [27] brings an improvement in code clone
detection. Following this guidance, we strive to design a new
neural network architecture that includes only the essential
mechanism of GNNs (e.g., neighborhood propagation) to
capture graph-structured code features. A GNN-based model
designed this way can be not only easy to train but boost the
performance of existing GNNs.

In this paper, we propose TAILOR, which detects code
functional similarity through a neural network architecture
tailored to learn graph-based code representations. First, we
need to decide what kind of code representations includes the
key feature to describe functionalities. As different code rep-
resentations are designed for unique program characteristics,
we choose to combine them into a joint graph structure named
code property graph (CPG) [28], providing a comprehensive
view of code functionalities. In particular, we integrate ASTs,
control flow graphs, and data flow graphs into the CPG as
they provide fundamental syntactical and semantic features
for program analysis [29]. Thereafter, we design a CPG-based
neural network (CPGNN) to distill useful features in the CPG
for functional similarity detection. More specifically, CPGNN
iteratively propagates program embeddings over the CPG to
refine them. By further stacking multiple propagation itera-
tions, it enforces the program embeddings to integrate graph-
structured CPG patterns to predict similar functionalities.

We evaluate TAILOR on two code functional similarity
detection tasks (code clone detection and source code clas-
sification) using two public benchmarks (OJClone [4] and
BigCloneBench [30]). Experimental results show that our
approach outperforms the state-of-the-art solutions, namely,
token-based methods [8], [10], tree-based methods [12], [14],
[15], [31], and graph-based methods [19], [25], [32]. Be-
sides, our CPGNN is superior to four widely-used off-the-
shelf GNNs (GCN [27], LightGNN [33], GGNN [24], and
KGAT [21]). Specifically, for code clone detection, TAILOR
achieves F-scores of 99.9% and 99.8% on the OJClone and
BigCloneBench datasets, respectively. For source code classi-
fication, TAILOR achieves an accuracy of 98.3%.

In summary, we make the following contributions:

• We present TAILOR to explicitly learns graph-based code
representations for two functional similarity detection tasks,
i.e., code clone detection and source code classification.

• We design a novel neural network architecture (CPGNN)
tailored to exploit graph-structured features from code prop-
erty graphs to generate high-quality code representations.

• We conduct extensive experiments on two public datasets.
The results show that TAILOR achieves state-of-the-art
performances on both code clone detection and source code
classification. All the artifacts (code, data, and logs) are
available at https://github.com/jun-zeng/Tailor.

II. PRELIMINARIES

A. Learning Code Representations

A code fragment is a contiguous segment of source
code [34] that can be specified as c = (f, s, e), including the
source file f , and the lines where c starts from s and ends at
e. To automate software engineering tasks, a code fragment is
typically encoded as a machine-ingestible representation, i.e.,
an embedding vector zc. However, the major challenge is how
to obtain high-quality code representations that preserve both
program syntactical and semantic features.

Traditional signature-based approaches rely on hand-crafted
features (e.g., variable type) to represent code fragments [18],
[35]. However, it is difficult to guarantee that manually en-
gineered features are beneficial for specific tasks (e.g., code
clone detection). To overcome this limitation, researchers
have recently applied deep learning (DL) to transform code
fragments into embeddings automatically. Instead of requiring
expert knowledge to define code features, DL employs neural
networks — optimized for software engineering objectives —
to predict the most beneficial code representations. In this
way, the DL-based approaches achieve state-of-the-art perfor-
mances in various tasks [6], [12], outperforming heuristics-
based approaches. Before being fed into a neural network,
a code fragment is usually converted into an intermediate
representation (e.g., token streams, statement sequences, or ab-
stract syntax trees) to abstract useful features of the underlying
program. A neural network suitable to process the intermediate
representation is then adopted to learn the corresponding
features. For example, ASTNN [14] treats a code fragment
as a sequence of statements so that it leverages a recurrent
neural network (RNN) to parameterize code fragments. In-
ferCode [15] takes an abstract syntax tree as input and thus
employs a tree-based convolutional neural network (TBCNN)
to generate its neural representation.

In this paper, we represent a code fragment into a graph
structure, code property graph (CPG). A CPG-based graph
neural network (CPGNN) is then designed to suit the need for
learning the graph-based code representation.

B. Detecting Code Functional Similarity

Given a code fragment of interest c∗, we aim to examine
a corpus of code fragments C = {c1, c2, ...} and identify
candidates that are functionally equivalent or similar to c∗.
This problem is referred to as code functional similarity
detection. At its core is to quantify the similarity between
two code fragments in the form of embedding vectors,
sim(zc∗ , zcj ), cj ∈ C. A straightforward solution is adapting
certain (e.g., Euclidean and Cosine) distance metrics. Espe-
cially, the shorter the distance is, the more functionally similar
the two code fragments are to each other. However, distance
metrics assume that each dimension of an embedding equally
contributes to the measurement of code similarity, which does
not necessarily hold in practice [18]. To address this issue,
recent studies [14], [15], [19] integrate the distance metric as
an objective function into the pipeline of code representation
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Fig. 1: Overview of TAILOR’s Architecture.

learning. This design enables a neural network to automatically
weigh the importance of different dimensions in zc through
backward propagating supervision signals of code similarity.

III. OVERVIEW

Figure 1 presents an overview of the TAILOR architecture.
It receives a corpus of code fragments and detects functional
similarity among them, which enables code clone detection
and source code classification. TAILOR consists of three main
steps: (1) parsing code fragments into code property graphs;
(2) learning code representations using a tailored graph neural
network; (3) predicting code functional similarities.

To reason about code functionality from different aspects
collectively, we utilize a joint data structure called code
property graph (CPG), which consists of three classic code
representations — abstract syntax tree (AST), control flow
graph (CFG), and data flow graph (DFG). Specifically, we first
extract the AST from a code fragment and identify control and
data dependencies in the AST to construct the CFG and DFG.
Then, the AST, CFG, and DFG are combined into a CPG, an
example of which is illustrated in Figure 3, which encodes
both syntax and semantics of the program in Figure 2.

Once the construction of CPGs from code fragments is
done, we develop a CPG-based neural network called CPGNN
to learn the corresponding representations (i.e., embeddings).
The key idea behind our CPGNN is to iteratively propa-
gate node embeddings along the CPG structure, explicitly
incorporating graph-structured program features into the code
representation learning process. After CPGNN refines node
embeddings, we aggregate them by pooling to form the vector
representations of code fragments. Finally, all vectorized code
representations go through a supervised classifier (specifically,
a binary classifier for code clone detection and a multi-
class classifier for source code classification) to predict code
functional similarity scores, which are later compared with the
ground truth to optimize the CPGNN.

IV. METHODOLOGY

A. Code Property Graph (CPG)

Various code representations have been developed in pro-
gram analysis to characterize different program properties.
However, individual representations commonly exhibit only
particular aspects (e.g., control flow) of code fragments and
thus are insufficient to reveal their functionalities.

To provide a comprehensive view of program functional-
ities, we combine multiple code representations into a joint

data structure, namely code property graph (CPG) [28]. In
particular, our CPG is designed to integrate three classic code
representations, namely an abstract syntax tree (AST), a con-
trol flow graph (CFG), and a data flow graph (DFG), because
they present essential syntactical and semantic features of
the underlying software programs and are not limited to a
particular programming language.

In the following subsections, we use a running example in
Figure 2 to demonstrate the steps to build a CPG and how the
CPG facilitates program analysis (e.g., explaining what the
variables a and b at Line 3 represent).

1 bool isfactor(int a, int b) {
2 bool res = false;
3 if (a % b == 0) {
4 res = true;
5 }
6 return res;
7 }

Fig. 2: Exemplary Code Fragment.

1) Extracting AST: AST provides a tree representation to
encode the abstract syntactic structure of source code [36].
Formally, we define an AST as Gast = (Vast, East), where
Vast and East are sets of AST nodes and edges, respectively.
Leaf nodes of an AST denote operands (e.g., identifiers),
and inner nodes indicate the corresponding operators (e.g.,
assignments). More specifically, each AST node is composed
of a type (e.g., identifier) and a token (e.g., isfactor) that
capture its syntactical and lexical information. The edges
in the AST describe how code statements are nested to
produce a program. Compared with plain source code, an
AST abstracts away irrelevant syntax (e.g., punctuation and
white space) for program analysis. In fact, AST is typically
the first intermediate representation produced by code parsers
(e.g., compilers) and forms the basis for generating other code
representations (e.g., CFG) [28]. However, a limitation of the
AST is to include only the syntax of code fragments rather
than their semantics (e.g., program dependencies), which can
be critical for modeling functionalities.

2) Identifying CFG: CFG enumerates all possible orders
in which code statements may be executed. Each order is
determined by a set of conditional statements, e.g., if and
while. Towards this end, nodes in a CFG represent statements,
and edges indicate transfers of control. To provide program-
wide control flows, we consider both intra-procedural and
inter-procedural dependencies, which describe control flows
within a function (e.g., branches) and across functions (invoca-
tions). Although a CFG can be built upon an assembly and/or
intermediate language for a particular programming language
(e.g., bytecode for Java), we choose to construct a CFG atop
an AST to guarantee the generality of our approach.

Technically, we extract intra-procedural control dependen-
cies with the following three steps: (1) identifying code
statements sharing the same parent AST node; (2) sequentially
connecting these statements by their order (i.e., line number)
in a code fragment; (3) if the parent AST node indicates a
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Fig. 3: Code Property Graph built from Figure 2.

transfer of control1, updating statement relationships according
to the semantics of the transfer. To extract inter-procedural
control dependencies, we also perform a three-step procedure:
(1) enumerating all caller functions by locating the AST
nodes whose type is Invocation; (2) identifying their callee
functions by searching for the declared functions with the
same function name, parameter number, and parameter type;
(3) connecting the caller and callee functions by creating
invocation and return edges. Formally, our CFG is formulated
as Gcfg = (Vcfg, Ecfg), where Vcfg are AST nodes of
code statements (e.g., if statement), and Ecfg denote intra-
procedural and inter-procedural control dependencies.

3) Identifying DFG: DFG describes how variables are
defined and used by code statements in an AST. Similar to
a CFG, nodes in the DFG denote statements, but edges reflect
the influences of statements on variable values. As variable-
oriented, the DFG is often used to support program analysis
that requires tracking the life cycle of variables, e.g., detecting
information leakage [37]. To identify data dependencies in an
AST, we first determine the set of variables defined and used
by each statement. Then, we calculate reaching definitions to
discover connections between variable definitions and uses.
Thereafter, we identify use-def chains of variables to form
data-flow edges in a DFG. Formally, we define the DFG as
Gdfg = (Vdfg, Edfg), where Vdfg and Edfg are AST nodes of
code statements and data dependencies, respectively.

4) Unifying Representations: After extracting the AST
from a code fragment and identifying the CFG and DFG, we
unify these code representations into a joint CPG. Figure 3
illustrates an example of the CPG built upon the code fragment
in Figure 2. With the CPG as the backbone, we capture
both syntactical and semantic program features, providing a
comprehensive view of code fragments for modeling their
functionalities. For example, by collectively tracking the AST
and data dependencies between FUNCDEF STATEMENT and
IF STATEMENT in Figure 3, we identify that the variables a
and b used at Line 3 in Figure 2 are, in effect, the arguments
of the function isfactor defined at Line 1.

A CPG is formally defined as Gcpg = (Vcpg, Ecpg), where
Vcpg = Vast and Ecpg = East∪Ecfg∪Edfg . CPG nodes denote
AST nodes attributed with their types and tokens, and edges
reflect AST edges, control dependencies, or data dependencies.

1In our implementation, we include nine types of control transfers, namely,
if, switch, while, do while, for, try catch, break, continue, and goto.
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Fig. 4: Illustration of CPG-based Neural Network.

B. CPG-based Neural Network (CPGNN)

We now tailor a new neural network architecture for CPGs
(CPGNN) to learn their representations, the workflow of
which is presented in Figure 4. CPGNN consists of three key
components: (1) embedding initialization, which parameterizes
each CPG node as an embedding (i.e., numeric vector) using
its type and token; (2) embedding propagation, which updates
node embeddings by iteratively propagating information from
neighbors; (3) embedding aggregation, which combines em-
beddings from all propagation iterations as the final represen-
tation of CPG nodes.

1) Embedding Initialization: As our CPG is built upon
an AST, a CFG, and a DFG, its nodes and edges naturally
preserve the syntax and semantics of code fragments. To inject
syntactical features into node representations, we first traverse
the CPG by following AST edges in pre-order to obtain
node type/token symbols as the training corpus. Then, on the
corpus, we employ word2vec [38] to project all symbols into
a d-dimensional space and collect the corresponding symbol
embeddings as Wv ∈ RS×d, where S is the number of unique
types/tokens. Afterward, we can retrieve initial embeddings of
type s1 and token s2 by querying Wv as follows:

hs1 = xs1Wv, hs2 = xs2Wv,

where hs1 ∈ Rd and hs2 ∈ Rd are the initial embeddings
of s1 and s2, respectively; xs1 ∈ {0, 1}S and xs2 ∈ {0, 1}S

separately denote the one-hot encodings of s1 and s2.
As each CPG node n ∈ Vcpg is characterized by both a

type s1 (e.g., identifier) and a token s2 (e.g., isfactor), we
use the fusion of type and token embeddings to describe n’s
representation as follows:

en = hs1‖hs2 ,

where || denotes the concatenation operator. By doing so, the
node representation en includes both syntactical and lexical
information. Note that for inner CPG nodes without token
symbols, we pad an empty token embedding for concatenation.

For prior graph-based methods [18], [19], initial node
representations are directly used to represent a code fragment,
which are later fed into a classifier to model its functionality.
In contrast, we further refine these node representations by
propagating information from their neighbors, so as to latch
on to the graph-structured program characteristics.

2) Embedding Propagation: Beyond the type and token
attributes, contexts (i.e., neighbors) also play an important role
in depicting CPG nodes. For example, probing into the variable



a in Figure 3, its node attributes (i.e., type identifier and
token a) only describe its name, which hardly reflects its func-
tionality holistically; whereas, the multi-hop path FUNCDEF
STATEMENT −→ Parameter list −→ Parameter −→ Identifier
a not only presents the neighbors of variable a, but also
emphasizes that the variable is a function argument. To capture
the information carried in such high-order connectivity, we
get inspiration from the embedding propagation mechanism
of GNNs [39], [40]. The key idea is to iteratively propagate
node representations along with CPG edges to enrich the
representations of ego nodes.

Here, we begin with the design of one-iteration propagation
and then generalize it to multiple iterations.
First-iteration Propagation. Given a CPG node n ∈ Vcpg ,
we define its one-hop neighbors as Nn = {m|(m,n) ∈ Ecpg},
where m denote the node directly connecting to n. To further
characterize the local neighborhood of n, we compute the
neural information propagated from Nn to n as:

eNn
=
∑

m∈Nn

α(m,n)em,

where α(m,n) controls the decay factor on each propagation
along with CPG edge (m,n). Intuitively, α(m,n) acts as
an attention function that specifies how much information is
passed from em to en, which normalizes the propagation so
that the scale of node embeddings is not linearly increased
with propagation paths. We implement it as:

α(m,n) = 1√
|Nm| |Nn|

,

where |Nm| and |Nn| denote the number of one-hop neighbors
for CPG nodes m and n, respectively.

Having obtained the information propagated from neigh-
bors, we next exploit it to update the representation of the
CPG node n, formally designed as:

e(1)
n = f(en, eNn),

where f(·) is the aggregation function; e(1)
n ∈ R2d is the node

representation after the first propagation iteration.
Clearly, the design of function f(·) is at the core of informa-

tion aggregation. Recent studies [6], [24], [25] have adopted
the aggregation function from the off-the-shelf GGNN [24]
that is built atop a gated recurrent unit (GRU) as follows:

fGGNN = GRU (en, eNn
) .

GRU is originally designed to solve the vanishing gradient
problem in neural machine translation [41]. In our case, the
gradient could vanish if the propagation iterations grow to a
huge number. However, we empirically find that four iterations
have been sufficient to capture code features for modeling
functionalities. Therefore, GRU is not necessary but heavy to
learn code representations, which even negatively increases the
difficulty of training (See Table VI for evidence). As such, we
choose to develop f(·) as follows:

f = LeakyReLU ((en‖eNn
) Wg) ,

where Wg ∈ R4d×2d is a trainable transformation matrix to
distill useful information from the concatenation; LeakyReLU
is a non-linear activation function. In this way, our GNN
takes Wg as the only trainable parameter for one-iteration
propagation, making it practically easy to train and revise.

Multi-iteration Propagation. To further leverage code fea-
tures from multi-hop neighbors, we stack multiple propagation
iterations to update CPG node representations. The number of
hops in integrating neighbors is determined by the number of
propagation iterations L. Formally, in the l-th iteration, the
representation of CPG node n is updated as:

e(l)
n = f(e(l−1)

n , e(l−1)
Nn

),

where e(l)
n is the updated representation after aggregating the

information propagated from l-hop neighbors, while e(0)
n =

en is the type/token embedding initialized by word2vec;
e(l−1)
Nn

=
∑

m∈Nn
α(m,n)e(l−1)

m . The aggregation function
f(·) is defined as:

f = LeakyReLU
((

e(l−1)
n ‖e(l−1)

Nn

)
Wg

(l)
)
,

where Wg
(l) ∈ R4d×2d is the trainable transformation matrix

at l-th iteration. Notice that the representations of CPG nodes
are updated based on the CPG topology in a synchronous
fashion. That is, we can compute new representations of all
CPG nodes in parallel to guarantee system efficiency.

3) Embedding Aggregation: After L iterations of infor-
mation propagation, we establish a series of representations
for each single CPG node n, namely {e(0)

n , e(1)
n , ..., e(L)

n }.
The outputs in different iterations highlight neighboring nodes
at certain hops. Upon these representations, we apply the
concatenation operator to combine them together:

e∗n = e(0)
n ‖e(1)

n ‖...‖e(L)
n .

Compared to more complicated combination operators (e.g.,
GRU, LSTM), the concatenation benefits from its simplicity:
involving no additional parameters to train but preserving ex-
plicit information pertinent to different hops of CPG neighbors
(e.g., the multi-hop path from FUNCDEF STATEMENT to
Identifier a in Figure 3).

In summary, iteratively propagating and aggregating infor-
mation over a CPG allows us to incorporate graph-structured
code features explicitly — covering syntax, semantics, and
context — into the representations of CPG nodes.

4) Time Complexity Analysis: The time cost of CPGNN
comes mainly from the embedding initialization, propagation,
and aggregation on CPG nodes. By adopting word2vec in skip-
gram, the computational complexity to initialize CPG nodes
is O(|P |d(1 + log2(S))) [42], where |P |, d, and S denote the
sizes of training corpus, type/token embedding, and type/token
symbols, respectively. Note that this initialization is a one-time
effort, no matter how many training epochs are performed.
More specifically, while training CPGNN, we do not feed the
training loss (of code clone detection and code classification)



backward to fine-tune word2vec embeddings. In the propaga-
tion over CPG, the time complexity of updating node embed-
dings is O(L|Ecpg|d2), where L and |Ecpg| denote the numbers
of propagation iterations and CPG edges, respectively, and d2

comes from the matrix multiplication that CPGNN applies
for feature transformation. As for the embedding aggregation,
only the concatenation is conducted, for which the time cost is
O(
∑L

l=1 |Vcpg|d), where |Vcpg| denotes the number of nodes
in a CPG. The overall complexity for training N epochs is
O(|P |d(1 + log2(S)) +N(L|Ecpg|d2 +

∑L
l=1 |Vcpg|d)) that is

linear to the size of a CPG, Gcpg = (Vcpg, Ecpg).

C. Neural Code Representation

Having obtained the final embeddings of CPG nodes, we
would like to generate a holistic representation of a code
fragment. To do so, we hire a pooling function to combine
CPG node embeddings as a neural code representation:

zc = ρ([e∗n1
, e∗n2

, ..., e∗nV
]),

where ρ is designed as the average pooling to delineate
important features from CPG nodes; {e∗n1

, e∗n2
, ..., e∗nv

} collect
the representations of CPG nodes {n1, n2, ..., nv} derived
from CPGNN in Section IV-B3. Alternatively, ρ can also be
set as the max pooling, which empirically achieves similar
performances in modeling code functionalities.

D. Functional Similarity Detection

In this section, we describe how neural code representations
are adopted to solve two code functional similarity detection
tasks: code clone detection and source code classification.

1) Code Clone Detection: This task aims to predict
whether a pair of code fragments share similar functionalities.
Towards this end, given two code fragments ci and cj , we mea-
sure their functional similarity by calculating the Euclidean
distance between their neural representations zci

and zcj
as:

ŷij = sigmoid
(
||zci

− zcj
||Wccd

)
,

where Wccd ∈ R2dL×1 is a trainable transformation matrix
to distill important code features for code clone detection;
sigmoid converts the predictive score into the probability. If
ŷij is larger than a pre-defined threshold δ, the code fragment
pair is predicted as a clone. Otherwise, the pair is a non-clone.

To optimize our model for the objective of code clone
detection, we resort to a binary cross-entropy loss as follows:

Lccd =
∑

(ci,cj)∈Occd

(−(yij · ln(ŷij) + (1− yij) · ln(1− ŷij))),

where Occd = {(ci, cj)|ci, cj ∈ C} denotes a training set of
clone and non-clone pairs; yij ∈ {0, 1} provides the ground-
truth clone label for the code fragment pair (ci, cj).

2) Source Code Classification: This task intends to classify
a corpus of code fragments by their functionalities. Given the
neural representation of a code fragment zci

, we apply a fully-
connected layer to classify it into M functionality categories:

ŷi = softmax(zci
Wscc),

where Wscc ∈ R2dL×M is a trainable transformation matrix;
softmax converts the predictive score into the probability
distribution over M functionality categories. The category that
ci belongs to is determined by arg max(ŷi).

To optimize our model for source code classification, we
opt for a categorical cross-entropy loss as follows:

Lscc =
∑

ci∈Oscc

(−yi · ln(ŷi)),

where Oscc = {ci|ci ∈ C} denotes a training set of code
fragments for classification; yi provides the one-hot encodings
of ground-truth classification labels.

V. EVALUATION

In this section, we focus on evaluating the performance of
TAILOR by answering the following research questions (RQs):

• RQ1: How does TAILOR perform in the code clone de-
tection and source code classification, compared with the
state-of-the-art?

• RQ2: How does CPGNN contribute to TAILOR, compared
with off-the-shelf GNNs?

• RQ3: To what extent do different design choices of CPGNN
affect TAILOR’s performance?

A. Implementation and Setup

1) Implementation: We use tree-sitter2 to extract ASTs
from code fragments written in C and Java languages. The
rest of the CPG building (e.g., CFG and DFG identification)
is developed in 7,020 lines of Python code. We implement
our CPGNN using TensorFlow [43] in 3,023 lines of code.
The model is optimized by Adam optimizer [44] with a
learning rate of 0.1. We train the model for 30 epochs on code
clone detection and 250 epochs on source code classification.
To mitigate the over-fitting problem, we employ a dropout
technique with a dropping ratio of 0.1. All model parameters
are initialized with Xavier [45]. For hyper-parameters, we
apply a grid search [22], [46]. In light of the best performance,
we report experimental results in a setting with the embedding
size d of type/token symbols as 16 and the numbers of
propagation iterations L as five and four on the OJClone [4]
and BigCloneBench [30] datasets. The threshold δ is set to
0.5 for code clone detection. We randomly sample software
programs in an experimental dataset to constitute the disjoint
training, validation, and testing sets, of which the proportions
are 80%, 10%, 10%. It is worth mentioning that we strictly
follow the recommendations by [47] to avoid common pitfalls
in evaluating learning-based approaches. For example, we tune
hyper-parameters based solely on the validation set to avoid
biased parameter selection.

All experiments are performed on a server with Intel Xeon
Gold 6248 CPUs @ 2.50GHz, 188GB physical memory, and
two NVIDIA Tesla V100 GPUs with 32GB memory.

2https://tree-sitter.github.io/tree-sitter

https://tree-sitter.github.io/tree-sitter


TABLE I: Dataset Statistics.

OJClone BigCloneBench
Program 52,000 22,723

LOC

Sum 2,021,272 683,745
Min. 4 4
Max. 1,305 1,060
Avg. 39 30

CPG
node/edge

Sum 12,689,188/18,971,201 5,187,310/6,425,799
Min. 19/22 8/10
Max. 4,201/13,112 10,604/12,913
Avg. 244/365 228/283

2) Baselines: To demonstrate TAILOR’s effectiveness, we
perform a thorough literature review to include as many state-
of-the-art approaches as possible for empirical comparison,
including two token-based (SourcererCC and NIL), four tree-
based (RtvNN, Code2Vec, ASTNN, and InferCode), and three
graph-based (FCDetector, FA-AST, and Mocktail) approaches.
We perform the comparison by detecting functionally similar
code fragments at the level of programs. Note that similar
programs may consist of different numbers of methods.
• RtvNN [12]: This model uses recurrent/recursive neural net-

works to detect clones using code structures and identifiers.
• SourcererCC [8]: This is a token-based method, which

exploits a bag-of-tokens strategy to detect near-miss clones
from large codebases and inter-project repositories.

• Code2Vec [31]: Such method encodes code fragments into
fixed-length vectors via representing source code as a col-
lection of AST paths and learning their semantic properties.
Here we further input code vectors to a fully-connected
layer for code clone detection and classification.

• ASTNN [14]: This is the state-of-the-art tree-based model
to learn code representations, which decomposes ASTs into
statement trees to avoid the gradient vanishing problem.

• FA-AST [25]: This work is the first to apply GNNs (e.g.,
GGNN) to the domain of code clone detection.

• FCDetector [19]: This graph-based method detects code
clones with syntactical and semantic program representa-
tions derived from word2vec [38] and graph2vec [48].

• Mocktail [32]: This approach extends Code2Vec by inte-
grating additional CFG and PDG paths.

• InferCode [15]: This model learns code representations by
predicting subtrees identified from the contexts of ASTs.
Similar to Code2Vec, we further input the code representa-
tions to a fully-connected layer to classify functionalities.

• NIL [10]: This is the state-of-the-art token-based method,
which verifies clone candidates by calculating the longest
common sub-sequences among token sequences.
We have reproduced all the baseline approaches from their

authors’ open-source implementations except FA-AST. For a
fair comparison, we use the same settings while evaluating
TAILOR and these baselines. Specifically, while generating
training/validation/testing sets for TAILOR, we have labeled
to which set a program belongs and followed the same labels
to generate training/validation/testing sets for the baselines.

B. RQ1: Performance on Code Clone Detection

TABLE II: Results of Code Clone Detection on OJClone.
Approach Precision Recall F-score AUC Time(s)
RtvNN 56.0 91.2 69.4 68.9 <1
SourcererCC 9.0 92.4 16.4 54.1 225
Code2Vec 97.6 75.6 85.2 98.6 <1
Mocktail 94.8 94.2 94.5 98.9 <1
ASTNN 98.3 92.1 95.1 96.0 175
FCDetector 96.3 86.9 91.8 91.8 <1
NIL 71.8 43.7 54.3 63.2 98
TAILOR 100 99.7 99.9 100 16
The time reported in the table is the time spent on prediction (or inference).

1) Settings: To evaluate how TAILOR performs on code
clone detection, we utilize two widely-adopted datasets: OJ-
Clone [4] and BigCloneBench (BCB) [30]. Their statistics
(e.g., the maximum number of CPG nodes/edges per program)
are summarized in Table I.

The OJClone dataset is collected from a pedagogical online
judge system, containing 52,000 C programs belonging to 104
programming tasks. We treat two programs solving the same
task as a clone pair since they achieve similar functionalities.
Following the previous work [13], we generate clone and
non-clone pairs using the first 15 programming tasks. For a
fair comparison, we further randomly sample clone pairs to
guarantee a similar distribution of clone and non-clone pairs
to [14]. Finally, we collect 19,800 clone pairs as positive
samples and 300,000 non-clone pairs as negative samples.

The BCB dataset is a popular code clone benchmark
collected from 25,000 Java software systems, containing
6,000,000 clone pairs and 260,000 non-clone pairs. Each
clone pair is manually assigned a clone type (i.e., Type-
1, Type-2, Type-3, and Type-4) depending on the line-level
and token-level similarities of its constituent code fragments.
Specifically, for Type-1 and Type-2 clones, their similarities
are 1. As the boundary between Type-3 and Type-4 is often
ambiguous, these two types are divided into strongly Type-3
with a similarity between [0.7, 1.0), moderately Type-3 with a
similarity between [0.5, 0.7), and weakly Type-3/Type-4 with a
similarity between [0.0, 0.5). Following recent literature [14],
we sample 20,000 pairs from each clone type as positive
samples and 20,000 non-clone pairs as negative samples.
Particularly, we fetch all the clone pairs from Type-1, Type-
2, and strongly Type-3 as none of them includes more than
20,000 pairs. In total, we collect 71,677 clone pairs.

Note that we evaluate FCDetector only on OJClone since it
requires caller-callee relations, but BCB does not contain inter-
procedural programs. As Mocktail does not support Java pro-
grams, we also evaluate it only on OJClone. Additionally, FA-
AST is not publicly available, so we cite the results reported in
its paper as we share the same experimental dataset. We have
attempted to fine-tune pre-trained code representations from
InferCode to detect code clones. However, since InferCode
does not perform well and its original paper also leaves the
supervised code clone detection as future work, we do not
include it in our evaluation.

2) Metrics: We use Precision, Recall, F-score, and AUC
as the evaluation metrics in code clone detection. Specifically,
Precision and Recall measure correctly detected clones against



TABLE III: F-scores of Code Clone Detection on BCB.
Approach T1 T2 ST3 MT3 WT3/T4 Avg.
RtvNN 95.3 89.3 86.6 79.0 68.5 83.7
SourcererCC 100 99.3 80.9 9.2 0.0 57.9
Code2Vec 98.9 97.0 94.2 90.1 84.7 93.0
ASTNN 100 99.9 96.7 95.6 93.6 97.2
FA-AST 100 100 99.8 98.2 94.6 98.5
NIL 99.9 99.5 92.7 35.6 2.9 66.1
TAILOR 100 99.9 99.8 99.6 99.8 99.8

TABLE IV: Results of Code Clone Detection on Individual
Clone Types in BCB.

Clone Type Precision Recall F-score AUC Time(s)
T1 100 100 100 100 8
T2 100 99.7 99.9 100 5
ST3 99.7 99.9 99.8 99.9 7
MT3 99.3 100 99.6 99.9 9
WT3/T4 99.6 100 99.8 99.9 9
The time reported in the table is the time spent on prediction (or inference).

all predicted clones and all ground-truth clones, respectively.
F-score calculates the harmonic mean of Precision and Recall.
AUC, ranging between [0, 1], shows the capability of distin-
guishing between clone and non-clone pairs. The higher the
AUC is, the better TAILOR is at code clone detection.

3) Results: Experimental results on the OJClone and BCB
datasets are listed in Table II and Table III. TAILOR consis-
tently outperforms all the state-of-the-art solutions regarding
Precision, Recall, F-score, and AUC in the OJClone dataset.
Specifically, TAILOR achieves a relative improvement of 4.8%
(99.9% vs. 95.1% from ASTNN) and 1.1% (100% vs. 98.9%
from Mocktail) in terms of F-score and AUC, respectively.

From Table III, we also see that TAILOR achieves the best
performance (F1-score) in the BCB dataset. It is worth noticing
that all of the evaluated approaches perform well in detecting
the Type-1 (T1) and Type-2 (T2) clones. This is expected as T1
indicates code copies without modification, and T2 includes
code clones with generally identical syntax. On the contrary,
only TAILOR is effective in detecting the rest of the clone
types. Even for the most challenging weakly Type-3/Type-4
(WT3/T4) clones, TAILOR still achieves nearly a 1.0 F-score.
However, the best existing solution (FA-AST with GNN)
only gets a 0.946 F-score. This experiment demonstrates the
advantage of GNNs in code clone detection and the necessity
of designing GNNs tailored to learn code representations.
Another interesting observation is that the tree-based and
graph-based approaches perform much better than token-based
approaches in moderately Type-3 (MT3) and WT3/T4 clones.
This matches our understanding that token-based methods lack
the knowledge of program structures, which can be captured
by other methods in the form of ASTs or PDGs.

In Table IV, we also show TAILOR’s detailed performance
on the BCB dataset regarding Precision, Recall, and AUC.
Upon closer investigation, we find that TAILOR gains very
high AUC (>0.999) on every type of code clone pairs, demon-
strating that our CPGNN excels at distinguishing program
functionalities.

In terms of efficiency, we report the time cost of pre-
dicting code clones in Table II and Table IV. Results show

TABLE V: Results of Source Code Classification on OJClone.
Approach Precision Recall F-score Accuracy Time(s)
Code2Vec 65.2 64.2 64.1 64.2 <1
Mocktail 85.2 85.5 85.1 85.5 4
ASTNN 98.0 97.9 97.9 97.9 15
InferCode 93.1 92.9 92.8 93.0 5
TAILOR 98.4 98.3 98.3 98.3 6

The time reported in the table is the time spent on prediction (or inference).

that RtvNN, Code2Vec, Mocktail, and FCDetector spend the
least time (<1s). The reason is that they directly input code
fragments embedded as vectors into a binary classifier. In
contrast, TAILOR performs additional embedding propagation
and aggregation. Compared with ASTNN, TAILOR is ten times
faster because ASTNN requires dynamic batch size adjustment
during the prediction procedure.

C. RQ1: Performance on Source Code Classification

1) Settings: To evaluate how TAILOR performs on source
code classification, we again use the OJClone dataset [4], con-
taining 52,000 C programs from 104 programming tasks. As
our goal is to classify code fragments by their functionalities,
we treat programs that solve the same task belonging to the
same class. In total, we collect 104 well-balanced classes from
the OJClone dataset, each class containing 500 programs.

For fairness, we only compare TAILOR with existing solu-
tions that have been evaluated [14], [15], [32] or claim to be
useful [31] in classifying code functionalities.

2) Metrics: Considering that this problem is a balanced
multi-class classification problem, we adopt Accuracy and
macro-averages of Precision, Recall, and F-score as the
evaluation metrics. Technically, a macro-average metric first
computes the metric for each class independently and then
reports the average. Take Macro-Precision as an example, we
calculate its value as: Macro-Precision = 1

N

∑N
i Precisioni,

where N is the number of classes, and Precisioni denotes
the Precision of the i-th class. Accuracy measures correctly
classified programs against all ground-truth programs. For
short, we call Macro-Precision as Precision, Macro-Recall as
Recall, and Macro-Fscore as F-score henceforth.

3) Results: Table V summarizes the results of TAILOR
and the state-of-the-art approaches on source code classifica-
tion. TAILOR achieves the highest Precision (98.4%), Recall
(98.3%), F-score (98.3%), and Accuracy (98.3%). To under-
stand the internals of our classification results, we visualize
code representations of the first five classes in the OJClone
dataset using the t-SNE [49] in Figure 5c. Clearly, the pro-
grams solving the same task are clustered together, while those
solving different tasks are separated with clear boundaries.
This visualization can be viewed as evidence that TAILOR
successfully learns code representations beneficial for program
functionality classification.

Similar to the code clone detection, we compare TAILOR’s
time cost with that of the state-of-the-art in Table V. TAILOR
is nearly three times faster than ASTNN, while Code2Vec
performs the best efficiency as it only needs to input the given
code representations into a multi-class classifier.
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Fig. 5: Classification of the first five programming tasks in OJClone, where each color represents a class. Best view in color.

D. RQ2: Comparison of Different GNNs

As discussed in Section IV-B2, off-the-shelf GNNs may
introduce operations not necessarily helpful in modeling code
functionalities. To investigate how different GNNs affect TAI-
LOR’s performance, we compare CPGNN with five popular
GNN variants as follows:

• CPGNN-NP represents CPGNN with the embedding prop-
agation disabled, which directly aggregates initial node
embeddings to formulate program embeddings.

• GGNN [24] adopts the gated recurrent units (GRUs) to
aggregate information from neighboring nodes.

• GCN [27] denotes the graph convolutional network, which
aggregates node embeddings propagated from neighboring
nodes with a weighted summation.

• KGAT [21] aggregates information propagated from neigh-
bors with a weighted summation and a weighted product.

• LightGCN [33] is a lightweight GCN, which discards the
feature transformation and nonlinear activation operations
in the embedding aggregation.

Table VI reports the performances of all GNNs in code
clone detection and source code classification on the OJClone
dataset. CPGNN performs the best regarding all the evaluation
metrics, while CPGNN-NP performs the worst. This matches
our expectation as CPGNN-NP fails to inject CPG structures
into code representation learning. LightGCN also does not
perform well compared to the rest of the GNNs. The reason
may be that LightGCN cannot infer the nonlinear relationships
among CPG nodes. More importantly, it cannot distinguish the
importance of information propagated from neighboring nodes
due to the removal of feature transformation. Additionally, we
find that GCN, GGNN, and KGAT underperform CPGNN,
which validates our claim that directly adopting off-the-shelf
GNNs may include unnecessary operations and even degrade
performances. By achieving nearly 1.0 F-scores in both code
clone detection and source code classification, our proposed
CPGNN proves to be the most effective GNN in detecting sim-
ilar code functionalities. Compared with the OJClone dataset,
we observe a similar phenomenon on the BCB dataset. For
example, CPGNN-NP also performs the worst on BCB (with
an F1-score of 70.4% on WT3/T4) while CPGNN performs
the best (with an F1-score of 99.8% on WT3/T4).

To gain further insight, similar to CPGNN, we visualize

code representations produced by CPGNN-NP and GCN —
which perform the worst and best among the GNN variants
— in Figure 5a and Figure 5b, respectively. As can be seen,
TAILOR clusters similar code fragments with clear boundaries.
In particular, dissimilar code fragments are clustered far away
from each other, and similar code fragments stay very close
together. However, the clustering boundaries produced by
CPGNN-NP and GCN are much less clear, even though GCN
achieves reasonably high accuracy in source code classifica-
tion. This result suggests the necessity of designing GNNs
tailored to software engineering tasks.

We also would like to point out that considering the large
codebases of modern software systems, improving the perfor-
mance of code representation learning for similarity detection
becomes increasingly important. For example, classifying code
fragments can assist developers in understanding and main-
taining large codebases. With this functionality, developers
can (semi-)automatically identify commonly repetitive tasks in
software systems and replace them with standard APIs [50].
As such, improving the precision of source code classifica-
tion by even 1% could result in thousands of fewer false-
positive programs to be manually investigated. This research
has advanced the state-of-the-art in the area of source-level
functional similarity detection. We hope that, through the study
of TAILOR, we can re-establish the usage of GNNs in the code
representation learning landscape.

Besides the effectiveness, we also compare the efficiency
of GNN variants by measuring the training time per epoch
using GPUs. Table VI shows that CPGNN-NP spends the
least time by removing the embedding propagation. CPGNN
is comparable to GCN and KGAT since they have similar
time complexities for embedding propagation and aggrega-
tion. GGNN takes the longest time due to its complicated
embedding aggregator (GRU). Note that by running the GRU,
GGNN needs to store all the intermediate states of CPG
nodes in the memory. However, since our GPU does not have
enough memory to hold all the node states for source code
classification, we have to run GGNN using CPUs instead of
GPUs and thus report N/A in Table VI.

E. RQ3: Evaluating the Design of CPGNN

As the proposed CPGNN plays an important role in TAI-
LOR, we investigate the impacts of its different design choices



TABLE VI: Effect of Different GNNs on OJClone.

Task Metric GNNs
CPGNN-NP LightGCN GCN GGNN KGAT CPGNN

CCD

Precision 100 75.5 99.0 98.8 99.4 100
Recall 0.0 7.2 98.4 97.6 92.9 99.7
F-score 0.0 13.1 98.7 98.2 96.0 99.9
AUC 82.5 89.8 99.9 99.9 99.9 100
Time(s) 81 125 190 211 199 193

SCC

Precision 72.3 79.6 97.6 96.8 95.2 98.4
Recall 72.4 79.8 97.6 96.7 95.2 98.3
F-score 72.0 79.3 97.5 96.7 95.2 98.3
Accuracy 72.0 79.6 97.6 96.7 95.2 98.3
Time(s) 13 38 98 N/A 110 107

The time reported in the table is the time spent on training for one epoch.

TABLE VII: Effect of Embedding Initialization in Code Clone
Detection (CCD) and Source Code Classification (SCC).

Task Dataset Metric Embedding
Type Token Comb

CCD OJClone F-Score 99.6 99.6 99.9
CCD BCB F-Score 99.5 99.7 99.8
SCC OJClone Accuracy 97.7 97.8 98.3

on TAILOR’s performance (e.g., F-score). Specifically, we
empirically evaluate the effect of embedding initialization,
CPG representations, and propagation iteration numbers.

1) Effect of Embedding Initialization: TAILOR initializes
CPG nodes with a fusion of type and token embeddings.
To understand their separate contributions, we conduct an
ablation study by initializing CPG nodes with only types or
tokens and evaluating the influences on code clone detection
and source code classification. Table VII shows the results
of different embedding initialization schemas, where Type,
Token, and Comb specify the initialization with types, tokens,
and a combination of types and tokens, respectively. We find
that using only types or tokens consistently results in lower
performance, which well validates our design of fusing type
and token embeddings to initialize CPG nodes.

2) Effect of CPG Representations: TAILOR represents a
CPG with an AST, a CFG, and a DFG. Here, we study the
performances of alternative CPG representations, namely AST,
AST and CFG, and AST and DFG. Experimental results are
summarized in Table VIII, where A, C, D denote the AST,
CFG, and DFG, respectively. TAILOR (i.e., A+C+D) yields
the best performance. This is expected because it provides a
comprehensive view of program characteristics, which suits
the need to understand functionalities at different levels of
code representations. Surprisingly, AST has also achieved very
high F-scores on both code clone detection and source code
classification. This phenomenon indicates that program syntac-
tical structures significantly contribute to modeling program
functionalities, which is also consistent with the findings in
recent studies [6], [12], [14].

3) Effect of Propagation Iteration Numbers: CPGNN’s
propagation iteration number L decides how many hops of
neighbors are integrated into code representations. Here, we
change the iteration number, from one to five, to understand
the advantage of the usage of multi-hop neighbors. We use
TAILOR-1 to indicate the CPGNN with one propagation iter-
ation and similar notations for others. Table IX summarizes
the results with different numbers of propagation iterations.

TABLE VIII: Effect of Code Representations in CPGs.

Task Dataset Metric Code Representations
A A+C A+D A+C+D

CCD OJClone F-Score 99.4 99.8 99.8 99.9
CCD BCB F-Score 99.4 99.6 99.6 99.8
SCC OJClone Accuracy 97.9 98.1 98.0 98.3

TABLE IX: Effect of CPGNN Propagation Iteration Number.

Task Dataset Metric CPGNN Layer
1 2 3 4 5

CCD OJClone F-Score 98.9 99.4 99.5 99.8 99.9
CCD BCB F-Score 99.5 99.7 99.6 99.8 99.8
SCC OJClone Accuracy 96.4 97.3 97.6 98.1 98.3

In general, increasing the number of propagation iterations
(i.e., including neighborhood at higher hops) boosts TAI-
LOR’s performance. For example, TAILOR-4 and TAILOR-
5 consistently achieve higher performances (i.e., F-score or
Accuracy) than TAILOR-1, TAILOR-2, and TAILOR-3. This
result quantitatively verifies that CPGNN can enhance its
expressiveness in distinguishing code functionalities by in-
corporating higher-hop neighbors, which also confirms that
CPGNN explicitly injects graph-structured program features
into code representation learning. Moreover, we discover that
the performance improvement becomes marginal by stacking
one more layer over TAILOR-4. This discovery suggests that
four-hop or five-hop neighbors around CPG nodes provide
sufficient information for learning code representations.

VI. THREATS TO VALIDITY

There are four main threats to the validity. First, we conduct
experiments using only C and Java programs, where the results
may not generalize to software systems implemented in other
programming languages (PLs). That being said, TAILOR’s
design and implementation are not limited to a particular PL.
For example, our CPG is built upon the AST, CFG, and DFG,
all of which are general code abstractions. We leave it as future
work to investigate TAILOR’s effectiveness on different PLs.

Second, the quality of our experimental datasets (OJClone
and BCB) needs to be further analyzed even though they are
widely used in the literature [14], [15], [19], [25]. Specifically,
the OJClone dataset may not be representative as it is not
collected from a real production environment. Besides, we
rely on the assumption that two programs in the OJClone are
functionally similar if they solve the same programming task.
However, this assumption may not always hold in practice.
To mitigate this threat, we also evaluate TAILOR using the
BCB dataset that provides manually validated code clone pairs.
Unfortunately, such ground truth can be influenced by the
benchmark authors’ intuition, potentially affecting our findings
in the evaluation. In addition, OJClone and BCB datasets
do not include obfuscated software systems where developers
deliberately change code to conceal functionalities and by-
pass analysis. However, we note that software obfuscation is
an open problem orthogonal to the study of TAILOR. One
should refer to existing work [51], [52] for solutions. At last,
whether TAILOR is effective to program functionalities (e.g.,
multithreading) beyond these datasets remains unknown, and
we leave it as future work.



Third, CPGNN’s hyper-parameters affect TAILOR’s perfor-
mance. As a common practice, we apply a grid search to
tune and find the hyper-parameters that perform the best in
validation sets. To reproduce our results, we set the same
random seeds, present all the hyper-parameter settings in
Section V-A1, and publicly release our evaluation artifacts.

Finally, we leverage open-source implementations while re-
producing the baseline approaches. However, as we have fine-
tuned their configurations (e.g., hyper-parameters) to achieve
the best performances in our experimental datasets, they may
not be consistent with those in the original paper. We cannot
reproduce FA-AST but cite the reported results due to missing
details in its paper. However, we believe this comparison is
reasonable as we share the same experimental dataset.

VII. RELATED WORK

Program Similarity. Measuring program similarity has a
broad spectrum of applications, such as bug detection [5],
[53], [54], refactoring [55], [56], and code reuse [57]–[59].
DyCLINK [60] provides a dynamic approach that identi-
fies similar code fragments based on their execution traces.
However, due to the nature of the dynamic analysis, such
an approach may face challenges on scalability and code
coverage. Static approaches have also been widely used to
quantify program similarity based on source code analysis [8],
[10], [11], [14], [18], [19]. For example, SourcererCC [8]
tokenizes code fragments and adopts a bag-of-tokens model
(similar to bag-of-words models in information retrieval) to
compare their similarities. Deckard [11] abstracts code frag-
ments into syntax trees and leverages the locality-sensitive
hashing to cluster similar ones. ASTNN [14] transforms
source code into statement sequences and applies the recurrent
neural network to detect functionally similar programs. To
benefit from transfer learning, WySiWiM [61] exploits a pre-
trained image classification neural network to learn visual
representations of source code. By doing so, WySiWiM is
computationally more efficient than traditional models that
require training from scratch. Inspired by this, one potential
approach to further speed up training TAILOR is to lever-
age transfer learning by integrating self-supervised learning
tasks. We note that software source code may not always be
available due to security considerations or license restrictions.
As such, researchers propose to measure program similarity
based on binaries [62]–[67]. For example, Tracelet [68] and
BinSequence [69] compare binary similarity by calculating
edit distances among instruction sequences. Genius [70],
Gemini [71], and DeepBinDiff [66] feed binaries into deep
neural networks to learn their representations for similarity
detection. To further boost the effectiveness, TREX [65] hires a
hierarchical transformer model to encode execution semantics
into binary representations. Additionally, the potential of inter-
mediate representation (IR) has also been explored to compare
program similarity [72]–[74]. For example, LLNiCad [72]
performs NiCad [75] on the C-like IR to detect code clones.

TAILOR detects program similarity at the source code level.
It has achieved state-of-the-art performances in both code

clone detection and source code classification. We attribute
such advancement to the effective modeling of a code property
graph using a tailored graph neural network.

Graph Neural Networks in Software Engineering. Graph
neural networks (GNNs) excel at learning graph-structured
representations [27], [39], [76]–[78]. As code features (e.g.,
control/data flow) are often represented as graphs, researchers
have recently started to exploit GNNs in software engineer-
ing tasks, such as program comprehension [79], [80], code
summarization [81]–[83], code clone detection [25], variable
name prediction [23], vulnerabilities discovery [6], [84], and
log level suggestion [85]. For example, Wang et al. [80]
propose a graph internal neural network that learns program
intervals (i.e., subgraphs that represent looping constructs) to
facilitate method name prediction. LeClair et al. [81] adopt a
convolutional GNN to generate natural language descriptions
of source code. Allamanis et al. [23] utilize GGNN [24] for
variable naming and misuse detection. Hoppity [84] leverages
a GNN [86] as external memory to detect and fix bugs in
Javascript programs.

FA-AST [25] is a pioneer to deploy GNNs in code clone
detection. While also using a GNN to compare program simi-
larity, TAILOR significantly differs from FA-AST in the design
of the GNN: FA-AST directly employs off-the-shelf GNN
models (e.g., GGNN [24]) to learn code representations. How-
ever, our evaluation shows that the recurrent neural network
(specifically, the gated recurrent cell) in GGNN complicates a
clone detector unnecessarily and even degrades the detection
performance. We empirically find that it is of great importance
to study the impacts of each operation in a GNN when applied
for program analysis. Following this guidance, we design
a CPG-based GNN that only includes operations suited for
learning code features from a CPG.

VIII. CONCLUSION

In this paper, we present TAILOR, a graph-neural-network-
based approach to detect functionally similar code fragments.
TAILOR summarizes program syntactic and semantic features
into a code property graph (CPG). By propagating information
over the CPG, TAILOR explicitly exploits graph-structured
program features to identify similar functionalities. We eval-
uate TAILOR on two public datasets and compare it with
nine state-of-the-art approaches. Experimental results show
that TAILOR outperforms existing solutions on both code clone
detection and source code classification tasks.
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