
A Reproduction of Tailor: Learning Graph-based
Code Representations for Source-level Functional

Similarity Detection
Jiahao Liu†∗ Jun Zeng†∗ Xiang Wang‡ Zhenkai Liang†

†National University of Singapore ‡University of Science and Technology of China
{jiahao99, junzeng, liangzk}@comp.nus.edu.sg xiangwang@ustc.edu.cn

A. Abstract

This artifact provides the source code of Tailor and scripts to
reproduce the experimental results from the ICSE 2023 paper
— “Learning Graph-based Code Representations for Source-
level Functional Similarity Detection” by Jiahao Liu, Jun
Zeng, Xiang Wang, and Zhenkai Liang. All the benchmarks
that are used in our evaluation are also included in the artifact.
To facilitate the artifact evaluation, we further include the
experimental logs when we performed the evaluation. We also
provide a docker image that has set up the environment and
installed all the dependencies, so the results can be reproduced
easily. In this artifact evaluation, we obtain the “Artifact
Available” and “Artifact Functional” badges.

B. Introduction

Tailor is a new code representation learning framework
tailed to detect code functional similarity. Built upon a cus-
tomized graph neural network, Tailor models graph-structured
code features from code property graphs to provide better
program functionality classification. The paper can be found
at https://github.com/jun-zeng/Tailor/blob/main/paper.pdf.

C. Artifact check-list (meta-information)
• Algorithm: Tailor.
• Data set: Benchmarks listed in Table I have been included.
• Run-time environment: Ubuntu. We provide a docker image.
• Hardware: Two GPUs (each with 32 GB memory) and 64 GB

physical memory.
• Execution: Run the Python and Bash scripts.
• Metrics: Precision, Recall, F1-score, and Accuracy.
• Output: Numerical results in text files.
• How much disk space required (approximately)?: 10 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 15 minutes.
• How much time is needed to complete experiments (approx-

imately)?: 16 hours.
• Publicly available?: Yes.
• Archived (provide DOI)?: doi.org/10.5281/zenodo.7533280.
• Code licenses (if publicly available)?: GPL-3.0 license.

D. Description

1) How to access: Our source code, benchmarks, and the
scripts to run experiments are publicly available on Zenodo:
https://doi.org/10.5281/zenodo.7533280. We also provide a

∗Co-primary authors. Jun Zeng is the corresponding author of the artifact.

GitHub repository for potential future updates: https://github.
com/jun-zeng/Tailor.

2) Hardware dependencies: To run all the experiments and
reproduce the results, you need a machine with two GPUs
(each with 32 GB memory) and 64 GB physical memory.
Note that although it is possible to run our experiments on
a CPU machine, you may not finish the training process
within two weeks. For example, it takes us over two weeks
to run the GGNN experiment using only CPUs. See Tai-
lor/log/gnn variants/classification oj ggnn cpu.txt for details.

3) Software dependencies: Docker is required to install
Tailor with our docker image. Python 3.6, Miniconda3, and
CUDA 10.0 are required to install Tailor from scratch.

4) Data sets: : We have included the benchmarks (OJClone
and BigCloneBench) in the released repository.

E. Installation

We provide two ways to set up the environment for Tailor.
• Build on a docker image: We provide a docker image

that have installed all the dependencies.
• Build on your machine from scratch: You can install

the dependencies manually.
We strongly recommend using our docker image to run the
artifact. This is the image we used in our evaluation.

1) Build on a docker image: Please ensure your system has
installed Docker. If not, you can install docker by following
the instructions. After installing Docker, download our docker
image (tailor image.tar) from Zenodo and load it into your
system with:
$ docker load < tailor_image.tar

Then, initialize a container using the image with:
$ docker run -it --gpus all tailor_image

bash

Note: If you encounter the problem of “docker: Error response
from daemon: could not select device driver with capabilities:
[[gpu]].”, please install the nvidia-container-toolkit and nvidia-
docker2 packages. Further, if you meet the problem of “Unable to
locate package nvidia-container-toolkit”, please refer to this solution.

After that, go to Tailor and you are ready to start the experiments:
$ cd /home/Tailor
2) Build on your machine from scratch: Make sure you have

installed Miniconda3 and CUDA 10.0 in your system. If not, please
install them following their official installation tutorials:Miniconda
and CUDA.

https://github.com/jun-zeng/Tailor/blob/main/paper.pdf
https://doi.org/10.5281/zenodo.7533280
https://github.com/jun-zeng/Tailor
https://github.com/jun-zeng/Tailor
https://docs.docker.com/engine/install/ubuntu/
https://doi.org/10.5281/zenodo.7533280
https://github.com/NVIDIA/nvidia-docker/issues/1238
https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html


Then, create a new conda environment with our provided environ-
ment.yml file:
$ conda env create -f environment.yml

After that, activate the environment:
$ conda activate tailor

Note that you also need to compile Cython:
$ cd cpgnn

$ python setup.py build_ext --inplace

Now you are ready to start the experiments:
$ cd Tailor

F. Experiment workflow
1) CPG Construction: We construct code property graphs

(CPGs) from the experimental datasets and generate their encodings
for the tasks of code clone detection and source code classification.

Unzip Datasets
$ cd datasets

$ tar -zxvf ojclone.tar.gz

$ tar -zxvf bigclonebench.tar.gz

$ tar -zxvf ojclassification.tar.gz

CPG Construction and Encoding Generation (∼ 1.5 hours)
If you want to skip this procedure, you can download our encod-

ing results from oj clone encoding, oj classification encoding, and
bcb clone encoding.
$ cd cpg

$ python driver.py --lang c
--clone_classification clone --src_path
../datasets/ojclone --statistics --encoding
--encode_path ../cpgnn/data/oj_clone_encoding

$ python driver.py --lang c
--clone_classification classification
--src_path ../datasets/ojclassification
--statistics --encoding --encode_path
../cpgnn/data/oj_classification_encoding

$ python driver.py --lang java
--src_path ../datasets/bigclonebench
--statistics --encoding --encode_path
../cpgnn/data/bcb_clone_encoding

After running these commands, you will get the encodings of the
experimental datasets in the cpgnn/data folder.

Visualize CPGs generated from C and Java programs
To demonstrate how CPGs look like, we provide two toy programs

in C and Java in the cpg/examples folder. You can visualize their
CPGs by running:
$ cd cpg/examples

$ python toy_visualization.py --lang c
--path ./isfactor.c --fig_name ./example_c

$ python toy_visualization.py --lang
java --path ./isfactor.java --fig_name
./example_java

Two figures will be generated in the cpg/examples folder. They are
the CPGs constructed from the toy programs.

2) CPGNN Modeling: In this section, we first show how to
train CPGNN for code clone detection and source code classification.
Then, we present the ablation study of the CPGNN. To facilitate
the artifact evaluation, we provide the logs when we run these
experiments in the cpgnn/logs folder.

Make sure you have generated the following encodings in the
cpgnn/data folder.

• oj clone encoding
• oj classification encoding
• bcb clone encoding

Train CPGNN for OJ Code Clone Detection (∼ 2 hours)
$ cd cpgnn

$ python main_oj.py --clone_test_supervised
--epoch 30 --classification_num 15
--clone_threshold 0.5 --dataset
oj_clone_encoding --type_dim 16 --layer_size
[32,32,32,32,32] --batch_size_clone 512
--gpu_id 0,1 --report clone_oj

See Tailor/log/gnn layer/clone oj layer 5.txt to check our exper-
imental log. We report this result in Table II in the paper.
Train CPGNN for OJ Source Code Classification (∼ 8 hours)
$ cd cpgnn

$ python main_oj.py --classification_test
--epoch 251 --classification_num 104
--dataset oj_classification_encoding
--type_dim 16 --layer_size [32,32,32,32,32]
--batch_size_classification 384 --gpu_id 0,1
--report classification_oj

See Tailor/log/gnn layer/classification oj later 5.txt to check our
experimental log. We report this result in Table V in the paper.

Train CPGNN for BCB Code Clone Detection (∼ 4 hours)
$ cd cpgnn

$ python main_bcb.py --clone_test_supervised
--epoch 30 --clone_threshold 0.5 --dataset
bcb_clone_encoding --type_dim 16 --layer_size
[32,32,32,32] --batch_size_clone 384 --gpu_id
0,1 --report clone_bcb

See Tailor/log/gnn layer/clone bcb layer 4.txt to check our ex-
perimental log. We report this result in Table III and IV in the paper.

Ablation Study for Tailor
In this part, we present the workflow of Tailor’s ablation study

described in Table VI, VII, VIII, and IX in the paper. Here, we
introduce how to reproduce the results using our scripts.
Step 1: Copy the artifact script to cpgnn folder, e.g.,
$ cp log/gnn_layer/artifact_gnn_layer.py

cpgnn/

Step 2: Run the ablation study script, e.g.,
$ cd cpgnn

$ python artifact_gnn_layer.py

Step 3: Check the experimental log.
$ cd cpgnn/log

In addition to different numbers of gnn layers, we also investigate
the effect of different cpg representation, embdding initialization
and gnn variants. You can follow the same workflow to conduct
these ablation studies.

Note: We also provide our experimental logs for these
ablation studies. You can find them in the log/gnn layer,
log/cpg representation, log/embedding initialization and
log/gnn variants folders.

G. Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://drive.google.com/file/d/1sQuMFwuelufxoP3_iAbpYO2rfdc3OzPU
https://drive.google.com/file/d/1u9s4K43NluxFMVLKoqFoLVJIKRIANuA2
https://drive.google.com/file/d/1AQmGqxsMavWbd0fkphHRNr-nXic9wcj8
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Abstract
	Introduction
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Build on a docker image
	Build on your machine from scratch

	Experiment workflow
	CPG Construction
	CPGNN Modeling

	Methodology

