SHADEWATCHER: Recommendation-guided Cyber Threat Analysis using System Audit Records

Jun Zeng, Xiang Wang, Jiahao Liu, Yinfang Chen, Zhenkai Liang, Tat-Seng Chua, Zheng Leong Chua

IEEE Security & Privacy, May 2022

Cyber Threats Are Everywhere

How to combat cyber threats through attacker's footprints left in systems?

Analyze Cyber Threat using System Auditing

Audit records are a valuable source for analyzing cyber threats:

- Provide a low-level view by monitoring system entity interactions
- Navigated through a **provenance graph** that describes a system's historical contexts

Data Exfiltration

System auditing connects separate attack steps, presenting the overall attack scenario

Previous Approaches using Audit Records

Statistics-based approaches [NDSS'18, NDSS'19, ...]:

- Quantify audit records' degrees of suspicion by their historical frequency
- False-positive prone

Specification-based approaches [USENIX Security'17, CCS'19, S&P'19, ...]:

- Match audit records against a knowledge base of security policies
- Time-consuming and error-prone to develop

Learning-based approaches [NDSS'20, USENIX Security'21, ...]:

- Train a model of benign behaviors and detect deviations
- Produce detection signals at a coarse-grained level, leading to extensive manual efforts for attack investigation

Our Observation

- Cyber threats can be revealed by determining **how likely** a system entity would **interact** with another entity
 - Unlikely (or "Unintended") interactions indicate cyber threats
 - Estimate such likelihood with historical system entity interactions

Sensitive files normally **do not** interact with public networks!

Should gtcache interact with /proc/27/stat? Yes!

Recommendation as a Similar Problem

A Similar problem has been explored in **Recommendation Systems**:

- Determine **how likely** a user would **interact** with an item
- Similar users share preferences on items: historical user-item interactions
- Item side information forms high-order connectivity that links similar items

Recommendation-guided Cyber Threat Analysis

Observation: Similar system entities share preferences on interactions

Insight: Identify high-order connectivity based on side information of system entities to better uncover their similarities

We formulate cyber threat analysis as a recommendation task: How likely a system entity would "prefer" its interactive entities?

SHADEWATCHER: Overview

Input: Audit records collected by system auditing frameworks (e.g., Linux Audit) **Output:** Detection signals for adversarial system entity interactions

Knowledge Graph Builder

 Given audit records on end hosts, we parse them into a provenance graph (PG) and extract system entity interactions into a bipartite graph (BG).

Knowledge Graph Builder (cont.)

- System entities' side information is not encoded in a PG or BG
- However, side information can be inferred from the context in which system entities are used
- To incorporate high-order connectivity, we combine system entity contexts (side information) and interactions into a **knowledge graph**:

 $KG = \{(h, r, t)|h, t \in \{system \ entities\}, r \in \{system \ call \ and \ interactions\}$

passwd _____ gtcache (passwd, read, gtcache)

passwd) 162.66.239.75 (*passwd*, *interact*, 162.66.239.75)

-----> System call ------> Interaction

Recommendation Model

Key Idea: use different-order connectivities in a KG to model the likelihood of system entity interactions, identifying anomalous ones as cyber threats

- Model first-order connectivity to parameterize system entities as embeddings (i.e., vectors)
- Model higher-order connectivity by propagating embeddings from neighbors via GNNs
- Classify system entity interactions into normal and anomalous

First-order Connectivity Modeling

- Model first-hop connections in a KG
 - System contexts (side information) decide the semantics of system entities
 - Use the KG embedding method (TransR): defines t = h + r in $KG = \{(h, r, t)\}$
 - Assign distinct semantics to the same entity conditioned on different relations

Higher-order Connectivity Modeling

- Model multi-hop paths in a KG
 - (1) Supplement similarities among system entities; (2) Exhibit how system entities influence each other

- Adopt a graph neural network (GNN) to iteratively propagate embeddings along with multi-hop paths in a KG
- Aggregate the embeddings from all the propagation iterations to form the final embeddings of system entities

Learning to Cyber Threat Analysis

• Given system entity interactions, we apply inner product on system entity embeddings to predict how likely a system entity would **not** interact with another entity.

Detection
$$h \otimes t$$
 likelihood 3.65 threshold f

 To keep up with evolving system entity interactions, we enable dynamic updates of the recommendation model with analyst feedback on detection signals.

Evaluation

• Experimental datasets:

• **Six real-world cyber-attacks** simulated in a testbed environment:

Configuration Leakage, Content Destruction, Cheating Student, Illegal Storage, Passwd Gzip Scp, and Passwd Reuse

• Four APT attacks from the DARPA Transparent Computing (TC) dataset Extension Backdoor, Firefox Backdoor, Pine Backdoor, and Phishing Executable

• Evaluation aspects:

- How **effective** is SHADEWATCHER as a threat detection system?
- To what extend do first-order and high-order information **facilitate** analysis?
- How efficient is SHADEWATCHER in deployment?

Effectiveness in Cyber Threat Detection

Identify cyber threats based on system entity interactions in the DARPA TC dataset and Simulated dataset

Dataset	Ground Truth	True Positive	False Negative	False Positive Rate
DARPA TC Dataset	68K malicious & 8M benign interactions	68,087	10	0.332%
Simulated Dataset	39 malicious & 3M benign interactions	37	2	0.137%

SHADEWATCHER distinguishes benign and malicious interactions with high accuracy

Study of Recommendation-guided Analysis

- Compare different KG embedding algorithms
- Study the importance of high-order information propagated by GNNs

KG Embedding	One-hot	TransE	TransH	TransR	TransR	
GNN	Yes	Yes	Yes	No	Yes	SHADEWATCHER
AUC Value	0.966	0.971	0.974	0.763	0.996	

SHADEWATCHER achieves the best performance (AUC):

- High-order information is **beneficial** to cyber threat analysis
- It is important to **distinguish** semantics under different relation contexts

System Efficiency

Measure the runtime overhead on the DARPA TC dataset at different phases: audit record **processing**, recommendation **training**, and cyber threat **testing**

Phase	Component	Mean
Processing	PG Construction	40.47 minutes
	Interaction Extraction	4.13 minutes
Training	System Entity Embedding	12.27 hours
	Information Propagation	6.45 hours
Testing	Interaction Classification	8.16 seconds

SHADEWATCHER pinpoints cyber threats from nearly a million interactions within seconds

Conclusion

- We propose ShadeWatcher:
 - Analyze cyber threats through recommendations on system entity interactions
 - Model a system entity's preferences on its interactive entities
- Key insights:
 - Similar system entities share preferences on interactions
 - High-order information can better correlate similar system entities

SHADEWATCHER: Recommendation-guided Cyber Threat Analysis using System Audit Records

審堂下之陰,而知日月之行,陰陽之變 Sensing the movement of Sun and Moon from their shades [0]

Thank you! junzeng@comp.nus.edu.sg

[0] Buwei Lv. Master Lv's Spring and Autumn Annals. 239 BC