
SHADEWATCHER: Recommendation-guided Cyber
Threat Analysis using System Audit Records

Jun Zeng† Xiang Wang‡∗ Jiahao Liu† Yinfang Chen§ Zhenkai Liang†∗ Tat-Seng Chua† Zheng Leong Chua¶
†National University of Singapore ‡University of Science and Technology of China §UIUC ¶Independent Researcher

{junzeng, jiahao99, liangzk, chuats}@comp.nus.edu.sg xiangwang@ustc.edu.cn

Abstract—System auditing provides a low-level view into cyber
threats by monitoring system entity interactions. In response
to advanced cyber-attacks, one prevalent solution is to apply
data provenance analysis on audit records to search for anoma-
lies (anomalous behaviors) or specifications of known attacks.
However, existing approaches suffer from several limitations: 1)
generating high volumes of false alarms, 2) relying on expert
knowledge, or 3) producing coarse-grained detection signals.

In this paper, we recognize the structural similarity between
threat detection in cybersecurity and recommendation in infor-
mation retrieval. By mapping security concepts of system entity
interactions to recommendation concepts of user-item interac-
tions, we identify cyber threats by predicting the preferences of a
system entity on its interactive entities. Furthermore, inspired by
the recent advances in modeling high-order connectivity via item
side information in the recommendation, we transfer the insight
to cyber threat analysis and customize an automated detection
system, SHADEWATCHER. It fulfills the potential of high-order
information in audit records via graph neural networks to im-
prove detection effectiveness. Besides, we equip SHADEWATCHER
with dynamic updates towards better generalization to false
alarms. In our evaluation against both real-life and simulated
cyber-attack scenarios, SHADEWATCHER shows its advantage in
identifying threats with high precision and recall rates. Moreover,
SHADEWATCHER is capable of pinpointing threats from nearly
a million system entity interactions within seconds.

I. INTRODUCTION

There has been a rapid escalation of high-profile security
threats that intentionally target large enterprises, such as the
Equifax breach that resulted in a record number of user data
stolen [1] and the Solarwinds hack whose scope and audacity
are claimed unprecedented [2]. Often termed as Advanced
Persistent Threats (APTs), they are carried out by skilled
attackers with sophisticated cyber capabilities. To combat these
threats, SIEM (Security Information and Event Management)
system [3]–[5] is pervasively deployed. Such software moni-
tors interactions among system entities (i.e., processes, files,
and sockets) on end hosts as audit records, which collects
evidence of attack footprints. Unfortunately, due to the ever-
expanding scale of modern IT infrastructures, the volume of
audit data is always overwhelming. For example, a typical
commercial bank with 200,000 hosts can produce almost 70
PB audit records per year [6].

To facilitate attack investigation in large-scale host records,
the research community proposes data provenance techniques
to navigate audit records through a provenance graph that
describes the history of a system’s execution [7]–[9]. The

∗Corresponding authors; research done in National University of Singapore.

rich contexts in provenance data enable analysts to perform
causal analysis of system activities to detect intrusions, trace
dependencies, and reason about security incidents. Threat
detection is the typical starting step of an attack investigation.
Based on how audit records are used, existing provenance-
based detectors fall into three categories: 1) Statistics-based
detection quantifies the suspiciousness degree of audit records
through their rareness in provenance graphs [10]–[12]; 2)
Specification-based detection matches audit records against a
knowledge base of security policies associated with known
attack patterns [13]–[19]; 3) Learning-based detection extends
machine learning techniques to model benign behaviors and
detect deviations from them [20]–[24].

Although existing solutions have shown promising detection
performance, they bear several inherent drawbacks. Statistics-
based detection is prone to high volumes of false alarms for
rare yet normal system activities. This is because statistical
analysis considers only direct (causal) connections in prove-
nance graphs rather than subtle (semantic) relationships among
system entities, which can be critical for threat analysis, es-
pecially when facing evolving behaviors. While specification-
based detection can maintain low false-positive rates by defin-
ing attack semantics as security policies, such heuristics are
time-consuming and error-prone to develop. According to a
recent survey, policies tied to COTS SIEM products cover
only 16% of public TTPs knowledge base [25]. Additionally,
learning-based detection aims to comprehensively incorporate
both the causality and semantics of audit records into threat
analysis. Despite the high detection accuracy, current learning
approaches produce detection signals at a coarse-grained level,
e.g., behavior level. Consequently, tedious manual labor is
required to review all audit records in individual behavior to
determine if they indicate an actual attack [26].

The fundamental challenge in analyzing cyber threats is to
conduct comprehensive yet fine-grained reasoning in a large
number of audit records. Security analysts need to discern not
only whether a certain audit record is the result of an attack
but how it is associated with the malicious behavior. Threat
actors typically induce unwanted behaviors with unintended
system entity interactions deemed suspicious to analysts. In-
tuitively, intended interactions form the norm of behaviors
and constitute the most “likely” behaviors to be observed. On
the contrary, unintended behaviors deviate from the norm and
contain “unlikely” interactions to be observed. As such, cyber
threats can be revealed by determining how likely a system

entity would interact with another entity. This likelihood of
interactions can be estimated by exploiting causal connectivity
in provenance graphs. Such connectivity, however, does not
capture the hidden semantic meanings behind system entities
that are necessary to uncover their relationships. To illustrate,
consider the Linux /proc file system. As /proc/25/stat and
/proc/27/stat belong to different processes, they are typically
disconnected in provenance graphs, being treated causally ir-
relevant by direct connections. However, both of them present
status information about processes, which can be reflected
when considering the border contexts around them.

We notice that a similar problem has been explored in the
recommendation domain, where the primary goal is to predict
how likely a user would consume items. Earlier recommenda-
tion systems [27], [28] assume that behaviorally similar users
would share preferences on items so that they comprehend user
preferences by finding similar users through historical user-
item interactions. However, direct connections between users
and items, termed as first-order connectivity, are insufficient
to compare semantic similarities among different items. To
address this problem, researchers further take into account side
information of items, e.g., the genre of movies, for capturing
item semantics. At its core is that side information can form
high-order connectivity to link similar items disconnected in
user-item interactions [29], [30]. Based on this advancement in
recommendations, we aim to incorporate side information of
system entities to interpret their interactions comprehensively.
Although such auxiliary information is not explicitly encoded
in provenance graphs, a recent study has demonstrated that
the semantics of system entities can be revealed from the
contexts in which they are used [31]. As such, we leverage
contextual information as the underlying side information
to profile system entities. Thereafter, system entities with
similar contexts would be semantically correlated, despite
being considered irrelevant in causal analysis.

By mapping cybersecurity concepts of system entity inter-
actions and entity contextual information to recommendation
concepts of user-item interactions and item side information,
we can formulate cyber threat detection as a recommendation
task. Especially, we observe that semantically similar system
entities would exhibit similar preferences on interactions. For
example, sensitive files (e.g., /etc/passwd and /etc/shadow)
normally do not interact with public networks, which other-
wise indicates data exfiltration [32]. Based on this observation,
threat detection can be further specified as predicting how
likely a system entity would not “prefer” its interactive enti-
ties. Note that in contrast to typical recommendation scenarios
studying user preferences, threat detection targets interactions
that system entities unlikely prefer, as such interactions are
commonly strong attack indicators.

In this paper, we present SHADEWATCHER, the first sys-
tem that analyzes cyber threats through recommendations on
system entity interactions. SHADEWATCHER extracts side in-
formation of system entities using a context-aware embedding
model [33] that unfolds the semantics of entities by their
usage in a running system. To unveil system entity intents

on interactions, SHADEWATCHER employs a recommendation
model built upon graph neural networks [34] that exploits
high-order connectivity by recursively propagating informa-
tion from neighboring entities. Furthermore, SHADEWATCHER
dynamically updates its models with analyst feedback on
detection signals (i.e., potentially malicious interactions). This
allows SHADEWATCHER to integrate false recommendations
as additional supervision to improve its detection capabil-
ities. As a semi-supervised approach, SHADEWATCHER is
trained on a combination of unlabeled benign system entity
interactions with labeled analyst feedback on false alarms.
In a nutshell, SHADEWATCHER’s novel utilization of recom-
mendations makes it advantageous to existing detectors in
that: 1) instead of counting historical frequency as a metric
to estimate degrees of suspicion, SHADEWATCHER infers
intrinsic semantics of system entities to discover anomalous
interactions; 2) SHADEWATCHER provides an end-to-end so-
lution to detect threats without prior knowledge of attacks; 3)
SHADEWATCHER produces fine-grained detection signals that
highlight the key indicator of an attack.

We implement SHADEWATCHER and evaluate its effective-
ness and efficiency on four APT attacks generated by the
TRACE team in the DARPA Transparent Computing (TC)
program [35] and six cyber-attacks from recent literature [6],
[31], [36] simulated in a testbed environment. Experimental
results show that SHADEWATCHER effectively differentiates
benign and malicious system entity interactions and detects
cyber threats with high precision and recall rates. We also
demonstrate that SHADEWATCHER is efficient enough to scale
to an enterprise environment.

In summary, we make the following contributions:
• We identify the task similarity between threat detection and

recommendation. Establishing a mapping between these
two domains is the key novelty of our approach, which
opens up a new space for effective solutions in cyber threat
analysis. Moreover, we recognize the concept of high-order
information in audit records for modeling preferences of
system entities on their interactive entities.

• We present SHADEWATCHER, the first system designed
after the principle of recommendations, to analyze cyber
threats using audit records in an automated and adaptive
manner while providing appropriate abstractions highlight-
ing key attack indicators.

• We implement SHADEWATCHER and conduct a systematic
evaluation against both real-life and simulated attack sce-
narios. The results show that SHADEWATCHER achieves
high effectiveness and efficiency in cyber threat analysis.

II. BACKGROUND & MOTIVATION

In this section, we use an APT attack to introduce challenges
in existing threat detection solutions. Then, we present our
insights of using recommendations to guide threat analysis.

A. Motivating Example

Browser extension with drakon dropper (Extension Back-
door for short) is an APT attack from the DARPA TC program

162.66.239.75:80

gtcache

pass_mgr

gtcache

146.153.68.151:80

/etc/passwd /proc/pid/stat sh

/tmp/ztmp ztmp

128.55.12.73

uname

!!

!!!" !"

!# !# !$

!%!& !%!&

!$

!'!$

!(

(a) System Provenance Graph

Iron Man

The Avengers

Thor

Little Women

Marvel Studios

Action

Soundtrack

Columbia Pictures

Alice

Bob

(b) Movie Recommendation

Possible side information:
𝒂𝒂𝟏𝟏: process status info;

gtcache

/proc/25/stat

…

𝒂𝒂𝟏𝟏

𝒂𝒂𝟐𝟐

𝒂𝒂𝟑𝟑

𝒂𝒂𝟒𝟒
uname

𝒂𝒂𝟑𝟑: uncommon network port;

𝒂𝒂𝟐𝟐: local file;

𝒂𝒂𝟒𝟒: user command;
… …

/proc/27/stat

128.55.12.73:53

(c) High-order Information in Audit Records

Fig. 1: (a) A simplified provenance graph of Extension Backdoor, where r1, r2, r3, r4, r5, r6, and r7 denote read, write, load,
send, recv, connect, and exec, and r0 reflects system entity interaction. (b) An example of recommending movies for Alice, where
blue, green, and gray nodes stand for users, items, and side information. Solid/dashed blue edges show historical/recommended
user-item interactions. (c) An illustration of system entity interactions with side information to form high-order connectivities.

red team vs. blue team adversarial engagement [35]. The attack
begins with compromising a vulnerable password manager ex-
tension pass mgr in Firefox while visiting malicious websites.
The compromised extension then drops a malicious program
gtcache on disk. During execution, the program exfiltrates user
information /etc/passwd to a public network. Meanwhile, it
implants ztmp to collect system configurations and perform a
port scan of target networks for internal reconnaissance.

Figure 1a shows a simplified provenance graph constructed
from audit records in Extension Backdoor. Nodes in the
graph represent system entities, where rectangles, ovals, and
diamonds indicate processes, files, and sockets, respectively.
Gray edges denote system calls orientated in the direction of
information flows. To reduce clutter, we use two individual
nodes in lieu of /proc/pid/stat with different process IDs and
128.55.12.73 with different network ports. The provenance
graph provides a promising representation to navigate large-
scale audit records. It enables security analysts to perform
backward and forward information flow tracking to discover
root causes of security incidents and their ramifications [10].

B. Challenge to Existing Solutions

Provenance-based detection excels at extracting potentially
malicious behaviors from provenance graphs. However, we
identify several inherent limitations of existing approaches.
• Statistics-based detection: Recent studies observe that se-

curity incidents in attack campaigns are usually uncommon
system activities [10]–[12]. Therefore, they quantify audit
records’ degrees of suspicion by their historical frequency.
Though simple and effective, a primary concern is the
number of false positives generated using statistical anal-
ysis. For example, when gtcache first reads /proc/27/stat
in Figure 1a, an alarm is raised as this activity has never
been seen before, although it represents a perfectly normal
process status retrieval. From this example, it is easy to
see the key shortfall of statistics-based methods, which
is identifying audit records rare in the history of system
execution but fails to differentiate normal records from
previously unobserved yet semantically relevant activities.

• Specification-based detection: Specification-based detectors
hunt down cyber threats by matching audit records against
a knowledge base of security policies that describe attack

semantics. While such detection can maintain a low false-
positive rate [13], developing security policies is time-
consuming and inevitably requires domain expertise. Re-
garding our motivating example, RapSheet [14] develops
over ten hand-crafted TTPs (Tactics, Techniques, and Pro-
cedures) queries for kill chain search; Morse [17] initializes
confidentiality and integrity tags of six million system en-
tities for tag propagation; Poirot [19] extracts query graphs
from a six-page cyber threat intelligence report [35] for
graph alignment. We also note that the quality of resultant
policies can be highly varied due to factors such as the
expert’s subjective interpretation of attacks, different levels
of competencies, and even just plain human mistakes.

• Learning-based detection: Current learning-based detectors
mostly train a model of benign behaviors and detect devi-
ations as cyber-attacks [20]–[23]. While these approaches
can achieve high detection accuracy by incorporating the
semantics of audit records into threat analysis, no learning
solutions to date provide explicable results or insights on
the key indicators of an attack, undermining the useful-
ness in practice. Specifically, extensive manual efforts are
required to review audit records in behavior to locate
particular system activities triggering a detection signal.
For example, as Unicorn [21] analyzes APT attacks upon
a long duration of system execution, analysts need to sift
through thousands of audit records to identify and validate
the indicator of a single detection signal.

C. Threat Detection as Recommendation

System entity interaction serves as the bedrock in our
approach, where we utilize the observation that interaction
with low likelihood can be naturally identified as a poten-
tial cyber threat. For example, executables downloaded by
browsers (e.g., gtcache) commonly do not run sensitive user
commands (e.g., uname), which otherwise signifies mali-
cious execution [37]. Provenance-based solutions typically use
causal connections in provenance graphs to interpret system
entity interactions. However, such causality is insufficient to
reveal the semantic relationship between two system entities.
In particular, causally disconnected entities (e.g., /proc/pid/stat
with different pid) are not necessarily semantically irrelevant.

We discover that a similar problem has been explored in
the recommendation domain. Figure 1b illustrates a movie
recommendation scenario, where Alice is the target user
to provide recommendations for. The user-item interactions,
Alice→Iron Man and Bob→Iron Man, indicate the behavioral
similarity between Alice and Bob. Based on the assumption
that behaviorally similar users would share preferences on
items [28], earlier recommendation systems predict that Alice
is in favor of Thor as Bob likes it. However, considering
the recommendations of relevant items to a particular user,
user-item interactions are insufficient as they cannot compare
item semantic similarity. To address this issue, the recently
proposed methods [29], [30] leverage item side information,
such as movie genre and studio, to form high-order con-
nectivities that link semantically similar items. For example,
the two-order connections, Iron Man→Action→The Avengers
and Iron Man→Marvel Studios→The Avengers, suggest that
Alice may prefer The Avengers as its side information is
identical to that of Iron Man.

Similarly, an intuitive way to better understand system entity
interactions is to identify side information of system entities
to form high-order connectivity. For example, if /proc/27/stat
were correlated with /proc/25/stat through side information
(e.g., process status info in Figure 1c), we would determine
that they share the probability of interacting with other system
entities (e.g., gtcache). However, side information is not
explicitly encoded in original provenance graphs. To extract
such knowledge, we take inspiration from a recent study [31],
which infers the semantics of system entities from their usage
contexts. More specifically, we regard contextual information
as auxiliary knowledge to profile system entities. As such,
causalities of system entities form user-item interactions as
in the recommendation, while system contexts provide side
information to form high-order connectivity. Note that since
contextual information of system entities is reflected in their
neighbors in provenance graphs, we capture high-order con-
nectivity as a multi-hop path correlating neighboring entities.

Therefore, we can formulate cyber threat detection as a
recommendation problem, which models the likelihood of in-
teractions between two system entities, predicting interactions
that entities normally do not like as cyber threats. For example,
detecting the attack of Extension Backdoor in Figure 1a
becomes recommending system entities with which gtcache
unlikely interacts in Figure 1c. Motivated by this insight, we
are able to bridge the threat detection and recommendation do-
mains and leverage the advances in recommendation methods
to help comprehend system entity interactions.

III. PROBLEM DEFINITION

We first formally define several basic concepts required to
understand how SHADEWATCHER provides recommendations.
Then, we introduce the problem statement and threat model.

A. Basic Concept

Provenance Graph: Audit records are a set of log entries that
describe the history of a system’s execution. Each record repre-

sents an activity at the granularity of system calls. Typically, it
is formulated as a 3-tuple (src, rel, dst), where src, dst ∈ E =
{process, file, socket}, and rel ∈ R = {clone, write, ...}.
For example, a network service scanning activity in Figure 1a
is defined as (ztmp, connect, 128.55.12.73:54). Data prove-
nance organizes audit records in the form of a provenance
graph, a directed acyclic graph composed of (src, rel, dst)
tuples. Formally, we define a provenance graph as GP =
{(src, rel, dst)| src, dst ∈ E , rel ∈ R}.
System Entity Interaction: Causal connections in a prove-
nance graph reflect interactions among system entities. For
example, a chain of edges connecting gtcache and uname in
Figure 1a indicate that they are interactive. In recommendation
scenarios, user-item interactions are commonly presented as
a bipartite graph to preserve the collaborative filtering sig-
nal [38]. We thus also define system entity interactions as
a bipartite graph, GB = {(e, yee′ , e′)|e, e′ ∈ E)}. The link
yee′ = 1 shows that entity e has interacted with entity e′, while
yee′ = 0 the opposite. Note that a system entity interaction
represents not only explicit data dependency but also implicit
control dependency. For example, the aforementioned interac-
tion between gtcache and uname shows a control dependency
where gtcache manipulates ztmp to execute uname.

Order of Connectivity: Here we define the concept of a
knowledge graph (KG) that encodes system entity contexts and
interactions into a unified relational graph. More specifically,
we convert a valid interaction (i.e., yee′ = 1) in the GB into
a 3-tuple (e, interact, e′), where interact stands for an addi-
tional relationship beyond system calls. As both GP and GB are
now defined as entity-relation-entity sets, we can unify them
as a KG, GK = {(h, r, t)|h, t ∈ E , r ∈ R′}, where R′ = R∪
{interact}. With a KG representing both system entity con-
texts and interactions, we formally define first-order connec-
tivities as one-hop connections (e.g., /etc/passwd r1−→gtcache)
in the KG and high-order connectivities as multi-hop paths
(e.g., /etc/passwd r1−→gtcache r4−→146.153.68.151:80).

B. Problem Statement

Given system entity interactions from audit records, we aim
to learn a recommendation model whose objective is to predict
the probability ŷht that a system entity h would not interact
with another entity t. Note that ŷht also indicates the likelihood
of an interaction to be adversarial, which forms the basis for
SHADEWATCHER to analyze cyber threats in audit records.

Threat Model: This work considers an attacker who aims to
manipulate or exfiltrate information present in a system. For
example, the attacker may install malware or insert a backdoor
to steal sensitive data. Similar to previous studies on system
auditing [11], [14], [17], [21], [39], we assume an OS and
kernel-space auditing frameworks to be our trusted computing
base. Additionally, we do not consider hardware trojans or
side-channel attacks that are invisible in system auditing.

Note that during the APT lifecycle [13], attackers may
escalate privileges to corrupt system auditing, at which point
audit data are no longer reliable for cyber threat analysis.

However, we can ensure the integrity of historical audit
records by employing secure provenance storage systems [8],
[40] or managing audit data in a remote analysis server. As
such, attackers have no way of manipulating previous audit
records that have tracked the evidence of privilege escala-
tion for SHADEWATCHER to detect malicious system entity
interactions. By further integrating tamper-evident auditing
techniques [41], [42], we can locate when attackers tamper
with audit records to hide their footprints. Finally, system
hardening techniques (e.g., Linux IMA) can be adopted to
increase the complexity of compromising system auditing.

IV. SHADEWATCHER OVERVIEW

Figure 2 presents an overview of the SHADEWATCHER
architecture, which receives audit records collected by the
commodity auditing framework (i.e., Linux Audit [43]) and
produces signals for adversarial system entity interactions.
SHADEWATCHER consists of four major phases: building a
knowledge graph (KG), generating a recommendation model,
detecting cyber threats, and adapting the model.

Our KG builder first converts system audit records into a
provenance graph (PG) and extracts system entity interactions
as a bipartite graph (BG). Then, the PG and BG are combined
into a KG, which is subsequently used to learn a recommen-
dation model whose objective is to predict the preferences of
system entities on their interactive entities.

The key idea behind our recommendation is to use different-
order connectivities in a KG to model the likelihood of system
entity interactions, identifying anomalies in system execution
as cyber threats. Full details will be given in § VI, but we
outline the workflow here. To explicitly exploit first- and high-
order information, we parameterize system entities as embed-
dings (i.e., vectors) via a context-aware embedding module
and then iteratively propagate embeddings from neighbors via
a graph neural network. By aggregating embeddings from
all propagation iterations, SHADEWATCHER determines the
probability of entity-entity interactions to be adversarial.

When system behavior changes, SHADEWATCHER may
raise false alarms for unobserved yet benign system entity
interactions. To keep up with evolving interactions patterns,
SHADEWATCHER provides an option to dynamically update
its recommendation model by adapting to analyst feedback on
false-positive interactions.

In summary, SHADEWATCHER’s functionalities can be sep-
arated into two stages, i.e., training and detection. To perform
anomaly-based detection, we use attack-free audit records
to train the recommendation model. For the newly arrived
audit stream, SHADEWATCHER first extracts system entity
interactions and feeds them to the recommendation model ob-
tained from the training stage. Then, SHADEWATCHER detects
interactions as potential threats if their probabilities of being
adversarial are larger than a pre-defined threshold. Note that
SHADEWATCHER is currently designed and implemented to
perform offline cyber threat analysis. We discuss the potential
of adapting SHADEWATCHER to an online approach and the
corresponding challenge in Appendix A.

Recommendation Model

Context-aware EmbeddingProvenance Graph
Construction

Interaction Extraction

KG Builder

Graph Neural Network
Threat

Detection

Audit Records

Audit Stream

AdaptorTraining
Detection

Feedback

Fig. 2: Overview of SHADEWATCHER architecture.

V. KNOWLEDGE GRAPH BUILDER

In this section, we present how to parse audit records into a
knowledge graph (KG), which preserves both first- and high-
order information in audit records.

A. Provenance Graph Construction

Given audit records on end hosts, SHADEWATCHER trans-
forms them into a graph structure called a provenance graph
(PG). Nodes in the graph denote system entities with a set
of attributes1, and edges describe causal dependencies among
system entities and the timestamp of record occurrence. As a
common representation of audit records [8], [16], [44], [45],
the PG facilitates reasoning over long-lived attacks as causal
records are closely correlated, albeit temporally distant.

Notice that most audit records are not strictly necessary in
the causal analysis of cyber threats [46]. Even worse, adver-
sarial activities may be crowded out in the noise of normal
and complicated audit records. Accordingly, we implement
several noise reduction strategies from recent work [6], [46],
[47] (explained in Appendix B) to reduce auditing complexity
while preserving attack-relevant information.

B. Interaction Extraction

SHADEWATCHER identifies cyber threats on the basis of
system entity interactions. A naı̈ve approach to extracting
interactions is to pair every two system entities in a PG and ex-
plore their causal dependency. In particular, a pair of causally
connected entities represents a valid interaction. Unfortunately,
traversing all system entity pairs in a PG is infeasible in
practice due to the large size that most PGs have. Case in
point, the PG built upon the DARPA TRACE dataset [48]
consists of over six million system entities, forming 18 trillion
pairs. However, only a tiny portion (much less than 0.01%) of
system entity pairs exhibit valid interactions.

Abstracting behaviors from audit records has been shown
effective in reducing analysis workloads [31]. Specifically,
each behavior is represented as a provenance subgraph with a
sequence of causal records rooted at a data object (e.g., file).
Figure 1a illustrates an example of the behavior associated
with Extension Backdoor. The gtcache highlighted with dou-
ble circles denotes the root data object. Working on the level
of behaviors can substantially reduce the scope of interaction
analysis because causally disconnected system entities have
been separated into different behaviors. As such, we decide
to partition a PG into multiple subgraphs, each describing a

1Process attributes: pid, ppid, exe, and args; file attributes: name, path, and
version; socket attributes: ip and port.

GNN

Detection

Knowledge Graph

Embedding

Embedding !"#$%

GNN
GNN

GNN

Concatenation

Concatenation

…

%&%'

Fig. 3: An illustration of SHADEWATCHER’s recommendation.

behavior, before extracting system entity interactions. To do
so, we first identify all data objects in a PG, then perform a
forward depth-first search on individual data objects to extract
subgraphs (see [31] for more details), and finally merge two
subgraphs if one subgraph is a subset of the other.

Intuitively, a behavior summarizes a series of interactions
between a data object and its interactive entities, which
separately indicate the initiator and targets of interactions.
For example, given the interactions gtcache→uname and
gtcache→162.66.239.75:53, we observe that an executable
attempts to collect system configurations and scan network
services. Based on this intuition, SHADEWATCHER converts
interactions in behaviors into a bipartite graph (BG), where
two disjoint node sets are data objects and system entities,
and edges connecting two sets reflect interactions.
Combining Provenance Graph and Bipartite Graph. Con-
sidering system entity interaction as a relation beyond system
calls, both PG and BG are formulated as sets of entity-relation-
entity tuples. We thus align system entities to merge them
into a KG as defined in § III-A. SHADEWATCHER provides
the capability to store a KG into databases (PostgreSQL [49]
or Elasticsearch [50]) so that the KG can be queried without
being built from scratch for downstream cyber threat analysis.
We also integrate Kibana [51] into SHADEWATCHER as the
visualization front-end to facilitate attack investigation2.

VI. RECOMMENDATION MODEL

Figure 3 illustrates the workflow of SHADEWATCHER’s rec-
ommendation model. It mainly consists of three components:
1) modeling the first-order information, which parameterizes
system entities as embeddings (i.e., vectorized representations)
through their usage contexts; 2) modeling the higher-order
information, which updates system entity representations by
recursively propagating information from multi-hop neighbor-
ing entities; 3) learning to detect threats, which predicts an
interaction’s probability of being adversarial on the top of two
system entity representations.

A. Modeling the First-order Information

Having coupled security concepts of system entity interac-
tions and entity contexts with recommendation concepts of
user-item interactions and item properties, we are aware that

2A demonstration can be found at https://youtu.be/Kd8t0YnPAvY.

direct connections in a knowledge graph (KG) present both
behavioral and semantic similarities among system entities.
To model such first-order connectivity, we use KG embedding
methods to parameterize system entities as vectors, where
the distance between two vectorized entities captures their
similarity. TransE [52] is a widely-used method. At its core
is the translation principle: if a tuple (h, r, t) holds in a KG,
the embeddings of system entities h, t and their relation r are
learned by satisfying eh + er ≈ et, where eh, er, et ∈ Rd.
This principle perfectly matches our intuitive understanding
of system entities. Take (ztmp, connect, 128.55.12.73:53) and
(ztmp, connect, 128.55.12.73:54) in Figure 1a as examples. As
both network sockets are represented as eztmp+econnect, they
are embedded nearby in the vector space, indicating similar
semantics, which mirrors our domain knowledge of labeling
both of them as network scanning targets. Despite its effec-
tiveness, a significant limitation exists in TransE — a single
relation type may correspond to multiple entities, causing 1-
to-N, N-to-1, or N-to-N problems [53]. We demonstrate how
this limitation affects cyber threat analysis in § VIII-C.

To overcome this issue, we employ TransR [33], which
learns a separate representation for a system entity conditioned
on different relations. It allows us to assign distinctive se-
mantics to the same entity under different relation contexts.
More formally, TransR maps system entities h, t and relation
r into embeddings eh, et ∈ Rd, er ∈ Rk. For each relation
r, it specifies a projection matrix Wr ∈ Rd×k to transform
system entities from a d-dimensional entity space to a k-
dimensional relation space, i.e., erh = ehWr, ert = etWr.
Afterward, TransR measures the plausibility score of a given
tuple (h, r, t) as follows:

f(h, r, t) = ‖erh + er − ert‖ ,

where ‖·‖ denotes the L1-norm distance function. A lower
score of f(h, r, t) suggests that the tuple is more likely to be
observed in a KG and otherwise not.

To optimize the representation learning of TransR, we resort
to a margin-based pairwise ranking loss, which enforces the
plausibility score of a valid (observed in a KG) tuple to be
lower than that of a corrupted (unobserved) tuple:

Lfirst =
∑

(h,r,t)∈GK

∑
(h′,r′,t′)/∈GK

σ(f(h, r, t)− f(h′, r′, t′) + γ),

where (h, r, t) holds in a KG, while (h′, r′, t′) does not
exist in the KG; γ is the hyper-parameter that controls the
margin between valid and corrupted tuples; σ(x) is the softplus
activation function. Following mainstream recommendation
systems [54], [55], we generate corrupted tuples by replacing
one system entity in a valid tuple with a random entity. In
summary, minimizing this loss of the first-order modeling
allows us to encode the semantic and behavioral similarities
into system entity representations.

B. Modeling the Higher-order Information

Beyond direct (first-hop) connections, multi-hop paths are
inherent in a KG. Such higher-order connectivities not only

https://youtu.be/Kd8t0YnPAvY.

supplement similarities among system entities but also exhibit
how system entities influence each other. For example, a two-
hop path /proc/25/stat r0−→gtcache r0−→/proc/27/stat shows the
similarity between /proc/25(27)/stat as they both interact with
gtcache; the /etc/passwd r1−→gtcache r4−→146.153.68.151:80 de-
scribes how sensitive user information is transmitted out of
an enterprise. Clearly, modeling higher-order connectivity can
help us localize potential adversaries by revealing system
entity relationships. However, solely using TransR is unable
to characterize such high-order information.

To capture high-order connectivity, we adopt graph neural
network (GNN) [34] to integrate multi-hop paths into system
entity representations. Specifically, given a system entity h,
one GNN module recursively updates its representation by
propagating and aggregating messages from neighbors:

z(l)h = g(z(l−1)h , z(l−1)Nh
),

where z(l)h ∈ Rdl is the dl-dimensional representation of
h at the l-th propagation layer, z(l−1)h ∈ Rdl−1 is that of
previous layer, and z(0)h = erh is initialized by embeddings
derived from TransR; Nh is h’ one-hop neighbors (aka ego-
network [56]), and z(l−1)Nh

∈ Rdl−1 memorizes the information
being propagated from h’s (l − 1)-hop neighbors; g(·) is the
aggregation function which combines the representation of an
entity with the information propagated from its neighbors.
As we can see, both information propagation and aggregation
functions play essential roles in a GNN module.

In terms of information propagation, as different neighbor-
ing entities should contribute unequally to the ego entity h,
we devise an attention mechanism [29] to discriminate the
importance of system entity neighbors:

z(l−1)Nh
=

∑
(h,r,t)∈Nh

α(h, r, t)z(l−1)t ,

where α(h, r, t) is the attention function to control how much
information is propagated from t to h conditioned on a certain
relation r. We design it as follows:

α(h, r, t) = ert
>tanh(erh + er),

where ert , erh, and er are system entity embeddings obtained
from TransR. The attention scores across all neighboring enti-
ties are further normalized by the softmax function. Through
this attentive information propagation, we are able to high-
light informative signals from relevant entities and filter out
uninformative signals from irrelevant entities.

In terms of information aggregation, we adopt the Graph-
Sage Aggregator [57] to update system entity representations:

g(z(l−1)h , z(l−1)Nh
) = LeakyReLU((z(l−1)h ||z(l−1)Nh

)W(l)),

where ·||· is the concatenation operator between two vectors;
W(l) ∈ R2d(l−1)×d(l)

is a transformation matrix at the l-th
propagation layer to distill useful information. As such, we can
integrate the messages of multi-hop neighbors into an entity’s
original representation z(0)h to form a new representation z(l)h .
Specifically, the number of hops in integrating neighboring
entities is determined by the number of propagation layers L.

C. Learning to Detect Threats

Having obtained the representations of system entities, we
move on to threat detection — learning to classify system
entity interactions into normal and adversarial.

After L iterations of information propagation and aggre-
gation, we obtain a series of representations for entity h,
{z(0)h , · · · , z(L)

h }, which encode different-order information in
a KG. Here we employ a simple concatenation operator to
merge them into the final representation:

z∗h = z(0)|| · · · ||z(L)
h .

The concatenation introduces no additional parameters to
optimize and preserves information pertinent to different prop-
agation layers, which has achieved promising performance in
recent recommendation systems [57], [58].

Given any interaction (h, interact, t), we apply the inner
product on system entity representations to predict how likely
system entity h would not interact with another entity t:

ŷht = z∗h
>z∗t .

If the probability ŷht is larger than a pre-defined threshold,
we further flag the interaction as a potential cyber threat. To
meet this principle, we learn parameters in the GNN module
by optimizing a widely-used pairwise loss [59]:

Lhigher =
∑

(h,r0,t)∈GK

∑
(h′,r0,t′)/∈GK

σ(ŷht − ŷh′t′),

where r0 denotes the interact relation; the interactions ob-
served in a KG built upon normal audit records are viewed as
negative (benign) instances; meanwhile, we randomly sample
interactions unobserved in the KG as positive (potentially
malicious) instances. Note that our sampled interactions do
not necessarily reflect cyber threats. We further explain their
impacts on threat detection in Appendix C.

By combining the losses of the first-order modeling and the
higher-order modeling, we minimize the following objective
function to learn parameters in our recommendation model:

L = Lfirst + Lhigher + λ ‖Θ‖ ,

where Θ = {eh, er, et,Wr,W(l)|h, t ∈ E , r ∈ R′, l ∈
{1, · · · , L}} is the set of trainable model parameters; λ is
the hyper-parameter that controls the L2 regularization term
to address the over-fitting problem [60].

D. Model Adaption

As system behavior changes, SHADEWATCHER may raise
false alarms for benign system entity interactions unobserved
at the training stage. Consequently, it is necessary to keep
up with the evolution of interactions. In practice, analysts in
security operations centers would continuously sift through
threat alarms to filter out false positives. Therefore, a natural
way to generalize SHADEWATCHER to evolving interactions
is to include analysts in the loop for dynamic updates.

Towards this end, we provide an option for analysts to give
new labels on false-positive interactions, allowing SHADE-
WATCHER to use false alarms as additional supervision to

Record
Queue

Graph
Queue

allocator generator

Builder

Thread 2

Thread n

Thread 1

Fig. 4: Parallel Provenance Graph Construction.

revise its recommendation model. For example, suppose (gt-
cache, interact, /proc/27/stat) has been detected as malicious
but later manually verified as a false alarm. To avoid future
mistakes for similar interactions, SHADEWATCHER feeds this
interaction as a new negative instance to retrain its model.

More specifically, to verify the nature of an alarm, ana-
lysts need to reconstruct the attack scenario by tracking the
provenance between two system entities in the potentially
malicious interaction. The main challenge faced by analysts is
to understand previously unseen interactions, e.g., the first time
a program loads a configuration file. To facilitate interpretation
of such interactions, an intuitive approach is to incorporate ad-
ditional auxiliary information — e.g., binary analysis, program
comprehension, and network monitoring — into the KG so
that analysts can reason about new interactions from different
aspects, which we leave for future work.

We acknowledge that low-quality (e.g., false) feedback may
mislead the recommendation model. However, as SHADE-
WATCHER provides fine-grained detection signals that high-
light key indicators of an attack, analysts have a high chance
to correctly differentiate true and false alarms.

VII. IMPLEMENTATION

We develop SHADEWATCHER in 11K lines of C++ code
and 3K lines of Python code. We present important technical
details in the implementation3.
System Auditing Collection: To collect whole-system audit
records, we make use of the Linux Audit with a ruleset cover-
ing 32 types of commonly-used system calls (see Appendix D
for details). Once an audit record is generated, it is processed
into a JSON format and shipped to SHADEWATCHER through
Apache Kafka [61] in a stream fashion.
Parallel Provenance Graph Construction: Our initial pro-
totype shows that the provenance graph (PG) construction
is considerably time-consuming, which degrades the overall
system performance. To put this into perspective, we present
that our prototype spends approximately six hours on just PG
construction for the DARPA TRACE dataset, while it only
takes several seconds to predict cyber threats.

To address this issue, we implement a parallel pipeline, as
shown in Figure 4, to allow concurrent audit record processing.
The allocator first loads local audit records in a streaming
fashion and inserts them into a record queue batch by batch.
Once the builder identifies a new batch in the record queue, it

3SHADEWATCHER is avaialbe at https://github.com/jun-zeng/ShadeWatcher

distributes the batch to an idle thread under its control. After-
ward, the thread produces a provenance subgraph into a graph
queue. Meanwhile, subgraphs in the graph queue are continu-
ously consumed by the generator to construct the final PG. In
our current implementation, the parallel pipeline only works
on audit records in the Common Data Model format [62]
(e.g., DARPA TC dataset format) as it allows independent
record processing. The massive dependencies among audit
records generated by commodity auditing frameworks bring
non-negligible efforts to support concurrent processing [10].
For example, the file descriptor used in a read record is always
defined in open or socket records. We believe that the parallel
or even distributed PG construction by itself is an interesting
research topic, and we leave such an extension to future work.
Recommendation Model Training: We implement our rec-
ommendation model using Google Tensorflow [63]. The model
is optimized by Adam optimizer [64], where the batch size,
margin γ, and normalization λ are fixed at 1024, 1, and 10−5.
We train the model for 30 epochs with an early stop strategy
— the training will be terminated if the accuracy does not
increase on the validation set for five successive epochs. To
mitigate the over-fitting problem, we further employ a dropout
technique [65] with a dropping ratio of 0.2.

We initialize model parameters Θ with Xavier [66]. For
hyper-parameters, we apply a grid search: the learning rate is
tuned in {0.0001, 0.001, 0.01}; the embedding size of system
entities is searched in {16, 32, 64}; the number of propagation
layers in GNNs is tuned in {1, 2, 3}; and the threshold is
searched in {-1, -0.5, 0, 0.5, 1}. In light of the best accuracy,
we report results in a setting with the learning rate as 0.001,
the embedding size as 32, two propagation layers with hidden
dimensions as 32 and 16, and the threshold as -0.5.

VIII. EVALUATION

We evaluate SHADEWATCHER on four aspects: 1) How
effective is SHADEWATCHER as a threat detection system?
(§ VIII-B) 2) How do first-order and high-order information
facilitate detection? (§ VIII-C) 3) What is the capability of
the model adaption to reduce false alarms? (§ VIII-D) 4) How
efficient is SHADEWATCHER? (§ VIII-E)

All experiments are performed on a server with Intel Xeon
E5-2620 v4 CPUs @ 2.10GHz, 64 GB physical memory, and
an NVIDIA Tesla V100 GPU. The OS is Ubuntu 16.04.3 LTS.

A. Dataset

In our evaluation, we use both a public DARPA TRACE
dataset [48] (henceforth called TRACE dataset) for the repro-
duction of experimental results, as well as a simulated dataset
to explore SHADEWATCHER’s efficacy in practice. Table II
summarizes the statistics of provenance graphs built upon our
experimental datasets. Note that the dataset statistics are not
necessarily the same as those of existing studies due to differ-
ent noise reduction strategies and system entity granularities.
For example, BEEP [67] partitions long-running processes into
finer-grained execution units, causing a significant increase in
the overall volume of system entities.

https://github.com/jun-zeng/ShadeWatcher

TABLE I: Statistics of attack scenarios in the TRACE and Simulated datasets. All attack scenarios are abstracted as 10 of
153,859 behaviors in Table II for cyber threat analysis. The PG, BG, and KG share the same number of nodes. The detection
results show the number of true positives (#TP), true negatives (#TN), false positives (#FP), and false negatives (#FN).

Dataset Attack Scenario #Node #Edge #Interaction Detection Results
PG BG KG Benign Malicious #TP #TN #FP #FN

TRACE
Dataset

Extension Backdoor 996 1,297 995 2,292 263 732 729 260 3 3
Firefox Backdoor 252 263 251 514 243 8 7 231 12 1

Pine Backdoor 67,352 67,396 67,351 134,747 10 67,341 67,338 10 0 3
Phishing Executable 23 23 22 45 6 16 13 5 1 3

Simulated
Dataset

Configuration Leakage 27 99 26 125 22 4 4 22 0 0
Content Destruction 84 358 83 441 77 6 6 76 1 0

Cheating Student 31 51 30 81 23 7 6 23 0 1
Illegal Storage 270 1,284 269 1,553 259 10 10 255 4 0

Passwd Gzip Scp 25 75 24 99 15 9 8 15 0 1
Passwd Reuse 11 14 10 24 7 3 3 6 1 0

For each dataset, we randomly select 80%, 10%, and 10% of
system entity interactions to constitute the training, validation,
and testing sets. To avoid data snooping and biased parameter
risks [68], we split interactions disjointly into these three sets
and tune SHADEWATCHER’s hyper-parameters based solely
on the validation set. With our full knowledge of attack
workflow, we manually label the ground truth of interactions
through their relations to attacks. Detailed descriptions of
attack scenarios are summarized in Appendix E.
TRACE Dataset. Our first dataset is a public APT attack
dataset collected by the TRACE team in the DARPA TC
program [69]. This dataset was generated during the third
red-team vs. blue-team adversarial engagement in April 2018.
The engagement simulates an enterprise environment for two
weeks in an isolated network with multiple security-critical
services such as an SSH server, email server, and SMB server.
The red team carries out five APT campaigns to exfiltrate
proprietary information. Four of them are visible in system
audit records [17], including Extension Backdoor, Firefox
Backdoor, Pine Backdoor, and Phishing Executable. To mix
benign and malicious audit records, the red team also performs
extensive common routines in parallel to attacks, such as web
browsing, reading emails, and administrative tasks.
Simulated Dataset. For our second dataset, we simulate
six cyber-attacks from previous work, including Configura-
tion Leakage [31], Content Destruction [36], Cheating Stu-
dent [70], Illegal Storage [36], Passwd Gzip Scp [6], and
Passwd Reuse [31]. Following public attack documentation,
we implement these attacks in a controlled testbed environ-
ment to collect the associated audit records. To incorporate
the impacts of benign activities, we emulate diverse system
behaviors (e.g., software installation using apt) in the best
efforts during in-progress attacks.

TABLE II: Dataset statistics in provenance graphs.
Dataset #Node #Edge #Behavior #Interaction

TRACE Dataset 6,109,307 12,661,091 148,335 7,923,332
Simulated Dataset 367,406 3,022,193 5,524 2,857,717

B. Effectiveness
SHADEWATCHER predicts a probability that a system entity

would not prefer its interactive entity, where the probability
exceeding a pre-defined threshold indicates a malicious in-
teraction (i.e., cyber threat). We evaluate SHADEWATCHER’s

detection effectiveness using precision, recall, F1-score, and
accuracy metrics. Specifically, precision measures correctly
detected threats against predicted threats; recall measures
correctly detected threats against ground-truth threats; and F1-
score calculates the harmonic mean of the precision and recall.
Evaluation on Attack Scenarios. We abstract ten cyber-
attacks from the TRACE and Simulated datasets as individual
behaviors with sets of benign and malicious system entity
interactions. Their statistics and detection results are summa-
rized in Table I and Table III. As observed, SHADEWATCHER
exhibits satisfactory detection performance on both experimen-
tal datasets. Specifically, it only misses 12 of 68,136 mali-
cious interactions. Upon closer investigation, we find that the
majority of false-negative interactions come from web server
communications. For example, two of three false negatives in
Extension Backdoor (i.e., motivating example) are interactions
between gtcache and {146.153.68.151:80, 162.66.239.75:80}.
SHADEWATCHER misclassifies these malicious interactions
because gtcache represents an executable downloaded by
browsers, and it frequently occurs for such executable to con-
nect to a web server in the training set. To gain further insight,
we study how SHADEWATCHER provides recommendations
for Extension Backdoor in § VIII-F. From Table I, we also
observe that SHADEWATCHER generates relatively more false
positives for Firefox Backdoor compared with other attack
scenarios. This case shows the importance of usage contexts
for distinguishing different system entities and predicting their
preferences. For the reason of space, we provide an in-depth
analysis of Firefox Backdoor in Appendix F. Furthermore,
as discussed in § III-B, audit records may not be reliable
after an attacker performs privilege escalation. Therefore, we
also evaluate the effectiveness of SHADEWATCHER’s detection
based only on audit data collected before privilege escalation
in Appendix G.

TABLE III: Detection results of attack scenarios.
Dataset Precision Recall F1-Score Accuracy

TRACE Dataset 99.98% 99.99% 0.9998 0.9996
Simulated Dataset 86.05% 94.87% 0.9024 0.9819

Evaluation on Normal Workloads. To evaluate false alarms
in normal workloads, we apply SHADEWATCHER to detect
cyber threats based on benign system entity interactions in the
testing sets. The results are summarized in Table IV. We see

0 5 10 15 20 25 30
Epoch

0

10

20

30

40

50

60

Lo
ss

Loss-Epoch
AUC-Epoch

0.6

0.7

0.8

0.9

1.0

AU
C

Fig. 5: Training loss and AUC value vs. the number of epochs.

that SHADEWATCHER achieves reasonably low false-positive
rates (0.332% and 0.137%) in both datasets. This is because
SHADEWATCHER interprets system entity interactions based
on their semantics rather than historical frequencies. As such,
rare or even unobserved interactions are not necessarily identi-
fied as anomalies. For example, although gtcache has not been
witnessed to interact with /proc/27/stat, SHADEWATCHER still
recommends a low probability (-1.39) for the interaction to
be adversarial, because /proc/27/stat shares similar semantics
with other /proc/pid/stat previously accessed by gtcache.

Notice that although SHADEWATCHER achieves reasonable
false-positive rates, the total number of false alarms can still be
high for manual verification due to the overwhelming volume
of audit records. We leave as future work to further assist
analysts in attack investigation, e.g., by threat alert triage.

TABLE IV: Detection results of normal workloads.

Dataset #Interaction
(Benign)

Detection Results
#TN #FP FPR

TRACE Dataset 724,236 721,831 2,405 0.332%
Simulated Dataset 285,732 285,340 392 0.137%

Evaluation on Classification. Since our cyber threat detection
is essentially a classification task, we further use Area Under
the Curve (AUC) to analyze SHADEWATCHER’s capability
in distinguishing between benign and malicious system entity
interactions. The higher the AUC value is, the better SHADE-
WATCHER is at interaction classification. More specifically, we
study how AUC varies on the testing set while training our
recommendation model. Figure 5 shows the training loss and
AUC on the TRACE dataset for 30 training epochs. As can
be observed, AUC increases to a high value after 14 epochs
and remains stable above 0.988, while the training loss drops
to a low value after 25 epochs and remains around 0.340.
Accordingly, we conclude that SHADEWATCHER is promising
at classifying system entity interactions.

C. Comparison Analysis

To answer how our proposed first-order and high-order mod-
eling facilitates cyber threat detection, we have developed sev-
eral baseline approaches in place of SHADEWATCHER’s com-
ponents to conduct an ablation study on the TRACE dataset.
In particular, we compare TransR with different embedding

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

it
iv

e
Ra

te

TransR(AUC: 0.763)
Onehot+GNN(AUC: 0.966)
TransE+GNN(AUC: 0.971)
TransH+GNN(AUC: 0.974)
TransR+GNN(AUC: 0.996)

Fig. 6: ROC curves for ablation study.

algorithms, namely one-hot encoding [71], TransE [52] and
TransH [53]. We also compare how SHADEWATCHER per-
forms with and without high-order information from GNN.

Figure 6 plots the receiver operating characteristics (ROC)
curves of threat detection results, demonstrating that SHADE-
WATCHER (TransR+GNN) outperforms all other approaches.
This is expected as one-hot encoding completely ignores the
contextual information of system entities. In addition, both
TransE and TransH assume system entity embeddings to be
the same under different relations contexts. However, entities
typically have multiple aspects, and different relations should
focus on different aspects. Following this principle, TransR
learns a separate representation for every relation on which an
entity is conditioned, so it does not conflate different aspects
of the same entity. To understand the internals of TransR, we
visualize TransR’s embedding spaces in Appendix H. While
TransR outperforms both TransE and TransH in our case, it
tends to incur a higher runtime overhead for projecting system
entities from an entity space to relation spaces. Fortunately,
as the projection (i.e., matrix multiplication) can be largely
parallelized by modern GPUs, it is no longer expensive to
compute. Our experiment shows that TransR is only 1.4X/1.1X
slower than TransE/TransH.

Another interesting observation is that without high-order
information from GNN, SHADEWATCHER consistently per-
forms the worst across all possible thresholds. However, by
enabling GNN, SHADEWATCHER achieves high AUC values
ranging from 0.966 to 0.996. One possible reason is that high-
order connectivity in a KG is critical for interpreting system
entity relationships, hence illustrating the significance of high-
order information in audit records for cyber threat analysis.

SHADEWATCHER vs. State-of-the-Art. Elsewhere in the
literature, the TRACE dataset has also been used to evaluate
intrusion detection systems (i.e., Poirot [19] and Morse [17]),
but SHADEWATCHER is fundamentally distinct from them in
terms of detection goals and techniques. Especially, SHADE-
WATCHER performs anomaly-based, not specification-based,
detection, requiring no a priori knowledge of attacks. How-
ever, it is worth mentioning that SHADEWATCHER achieves
comparable detection effectiveness to specification-based de-
tectors by successfully detecting all four APT attacks on the
TRACE dataset. We further discuss cyber threats that different

detection systems might miss. False negatives produced by
specification-based detection are primarily attributed to zero-
day attacks. For example, Poirot inevitably misses APT attacks
not yet described in existing CTI reports. On the other hand,
SHADEWATCHER experiences false negatives if a threat actor
intentionally steers malicious activities towards the learned
recommendation model to evade detection. We provide details
of evasion attacks on SHADEWATCHER in § IX.

Unicorn [21] is another anomaly detector that identifies
cyber threats without domain expertise. Unfortunately, the
coarse granularity of its detection signals prevents responding
to threats timely. To illustrate, suppose Unicorn configures the
size of graph sketches as 2,000 in [21]. An analyst then has
to review 2,000 audit records to investigate a single attack
indicator. On the contrary, SHADEWATCHER explores the po-
tential of performing finer-grained detection on system entity
interactions, which directly signify adversarial intentions.

D. Model Adaptability

By adapting to analyst feedback on false alarms, SHADE-
WATCHER supports dynamic updates to its recommendation
model. We evaluate the ability of SHADEWATCHER’s adaption
to reduce false positives on normal workloads in the Simulated
dataset. For the case of model adaption, we assume that an an-
alyst continuously reports false-positive interactions to update
SHADEWATCHER. To compare false-positive rates (FPR) with
and without model adaption, we evaluate SHADEWATCHER on
three different training sets: (A) the first 80% interactions; (B)
the first 80% interactions with false positives in the subsequent
10% interactions; (C) the first 90% interactions. For a fair
comparison, we consistently extract the last 10% interactions
as the testing set. The sequence of interactions is determined
by their occurrence timestamps in audit records.

By training on the first 80% interactions to predict cyber
threats in the subsequent 10% interactions, SHADEWATCHER
reports 263 false positives and 285,508 true negatives. As such,
compared to (A), both (B) and (C) can be viewed as integrating
additional manual feedback on 263 false alarms. The only dif-
ference is that (C) includes extra 285,508 true-negative interac-
tions. Observe that in Table V, SHADEWATCHER reduces 118
false positives by incorporating analyst feedback. Increasing
the training data from 80% to 90% can further remove 37 false
alarms. This makes sense as our model adaption only takes
false-positive interactions as additional supervision, and thus it
inevitably loses the semantics of true-negative interactions that
may also be beneficial for interpreting unknown interactions.

TABLE V: False positive reduction with model adaption.
Training Feedback #FP #TN FPR

80% 0 392 285,340 0.137%
80% 263 274 285,458 0.096%
90% 263 237 285,495 0.083%

E. Efficiency

We measure the runtime overhead of SHADEWATCHER
at different phases, including data processing, training, and

Number of threads

Th
ro

ug
hp

ut
 R

ec
or

ds
/m

s

(a)

Size of record batch

Th
ro

ug
hp

ut
 R

ec
or

ds
/m

s

(b)

Number of threads

CP
U

 U
til

iz
at

io
n

(*
10

0%
)

(c)

Number of threads

M
em

or
y

O
ve

rh
ea

d
(%

)

(d)

Fig. 7: System performance for provenance graph construc-
tion: (a) (c) (d) show the throughput, CPU utilization and
memory overhead under different numbers of threads. (b)
shows the throughput under 56 threads with different sizes
of audit record batches. Note that our experimental machine
supports at most 56 threads running in parallel.

testing phases. All experiments are performed five times on the
TRACE dataset, and we report the mean results in Table VI.

Data processing. Data processing aims to parse audit records
into a knowledge graph (KG). The overhead mainly comes
from provenance graph (PG) construction, noise reduction,
and interaction extraction. In total, it takes 100.37 minutes to
process the TRACE dataset with 635GB worth of audit data.

To improve system efficiency, we leverage multiple threads
to construct a PG in parallel. Compared with the single-
thread (naı̈ve) prototype, the multi-thread design accomplishes
an 8X speedup. That is, it saves over five hours on just
data processing. To further explore its scalability, we mea-
sure the throughput, CPU utilization, and memory overhead
with different configuration values of thread numbers and
record batch sizes. Figure 7a shows that SHADEWATCHER
processes up to 300 audit records per millisecond with 56
threads. Especially if an end host generates 400k records
per day [14], we estimate that SHADEWATCHER is capable
of scaling the PG construction to upwards of 65,000 hosts.
In general, SHADEWATCHER’s throughput increases along
with the thread number. However, it will reach an upper
bound due to the limitation of disk I/O performance. Observe
that in Figure 7b, it is flexible in choosing sizes of audit
record batches while not heavily affecting system efficiency.
Figure 7c and Figure 7d further illustrate that CPU utilization
increases along with increasing thread number, while memory
overhead the opposite. This is within our expectation as most
memory overhead comes from record batches stored in the
record queue, and more threads can consume batches faster,
leading to fewer batches maintained in the memory.

Training. We evaluate the training overhead by measuring
how long SHADEWATCHER takes to obtain a recommendation
model that yields the best accuracy on the validation set.
Because most training computations (i.e., matrix operations)
can be accelerated by GPU parallel computation, we apply a
high-performance GPU to train our model. On average, it takes
2,103 seconds and 1,106 seconds per epoch to train the TransR
and GNN modules, respectively. The fully-trained model is
then saved to disk so that SHADEWATCHER does not need to
be retrained from scratch with new incoming training samples.
Note that we train the model on a single GPU. The training
time can be further reduced by parallelizing SHADEWATCHER
on multiple GPUs [72].
Testing. The testing phase refers to the duration from inputting
system entity interactions to predicting cyber threats via the
recommendation model from the training phase. On average,
it takes 8.16 seconds to predict 792,333 interactions (68,097
malicious and 724,236 benign interactions). So far, we have
conducted all experiments on GPUs, but GPUs may not be
available in most real-life threat detection scenarios. Therefore,
we further evaluate SHADEWATCHER’s efficiency on CPUs by
performing detection on the same server with GPU disabled.
Although the testing time increases to 220 seconds, we believe
the efficiency is still promising as the scale of the dataset is
comparable to two months of user daily data.

TABLE VI: Runtime overhead on the TRACE dataset.
Phase Component Mean Std Dev

Data
Processing

PG Construction (Naı̈ve) 5.97 Hours N/A
PG Construction (Parallel) 40.47 Min. 0.21

Noise Reduction 55.77 Min. 0.09
Interaction Extraction 4.13 Min. 0.01

Training System Entity Embedding 12.27 Hours N/AGraph Neural Network 6.45 Hours
Testing Cyber Threat Detection 8.16 Sec. 0.93

F. Case Study

We demonstrate how SHADEWATCHER uses recommenda-
tions to guide cyber threat analysis by two APT attacks: Ex-
tension Backdoor and Firefox Backdoor. Extension Backdoor
is the attack from which the motivating example is derived.
We leave the description of Firefox Backdoor in Appendix F.

Extension Backdoor generates a total of 995 system entity
interactions, 732 of which are manually labeled as threats. We
would like to point out that the interaction between gtcache
and /etc/passwd is treated as a benign activity. This is because
/etc/passwd serves as public information on a system, which
is regularly read by a variety of daily programs, such as bash,
ssh, and even cat. Accordingly, access to /etc/passwd locally
does not necessarily bring risks.

As shown in Figure 8, SHADEWATCHER predicts the prob-
abilities of being adversarial for individual system entity in-
teractions. The solid (green) edges denote ground-truth benign
interactions, while the dashed (red) edges represent malicious
interactions. We notice that of 263 benign interactions, most
(230) come from process status retrievals (i.e., interactions
with /proc/pid/stat), while of 732 malicious interactions, most
(721) come from port scans for internal reconnaissance (i.e.,

-1.88 -1.66

< -1.0 -2.07-2.08 > 0.5

0.42 0.51

-1.16-1.91

gtcache

pass_mgr

gtcache

146.153.68.151:80

/etc/passwd /proc/pid/stat sh

/tmp/ztmp ztmp

162.66.239.75:80

128.55.12.73

uname

-1.93

Fig. 8: Recommendations on the Extension Backdoor.

interactions with 128.55.12.73). Experimental results show
that SHADEWATCHER accurately identifies all benign ac-
tivities except three false positives (e.g., interactions with
/proc/24(29,1896)/stat) and warns of all malicious activities
except three false negatives (i.e., interactions with /tmp/ztmp,
146.153.68.151:80, and 162.66.239.75:80). More importantly,
benign and malicious interactions are well-separated with
considerable margins. Case in point, all benign interactions
are predicted with low probabilities (below −1.0) of be-
ing cyber threats, while the malicious ones are given high
probabilities (beyond 0.4). Similar phenomena can also be
found in other attack scenarios. Therefore, we hypothesize
that SHADEWATCHER is not sensitive to thresholds. This also
explains the nearly perfect AUC in § VIII-C.

Although it is reasonable to access /etc/passwd locally,
we claim that /etc/passwd is not supposed to be sent out to
public networks since it includes sensitive user information.
Any interactions between /etc/passwd and public networks
should be recommended as potential data exfiltration and
reported to analysts for inspection. To validate this claim, we
conduct an additional experiment to predict the probability
of the interactions between /etc/passwd and network sockets
to be adversarial. As expected, both the interactions between
/etc/passwd and {146.153.68.151:80, 162.66.239.75:80} are
given high probabilities (0.68 and 1.71), which are well
beyond our threshold (-0.5) indicating attack activities.

IX. DISCUSSION & LIMITATION

Benign Dataset. SHADEWATCHER, like most anomaly detec-
tors [21], [26], [73]–[75], requires attack-free data to profile
benign behaviors. However, it does not guarantee that real-
world audit records are perfectly clean. Accordingly, it is
necessary to explore SHADEWATCHER’s robustness against
potential data contamination. To this end, we provide empirical
results to demonstrate what happens if we purposefully poison
our training set by treating malicious system entity interactions
for detection in the TRACE dataset as benign training data.
Results show that false negatives increase from 10 to 18 com-
pared with training on benign audit data. As most malicious
interactions (68,079) are still detected, we hypothesize that
SHADEWATCHER is generally robust to data contaminations.
Evasion Attack. Evading SHADEWATCHER requires non-
trivial efforts even for an attacker who is aware of its detection
logic. Specifically, SHADEWATCHER differentiates between
benign and malicious system entity interactions by modeling

not only first-order (causal) but also high-order (semantic) con-
nectivities. Therefore, directly incorporating noisy interactions
irrelevant to attacks does not serve the purpose of evasion.
Instead, the attacker must carefully match the semantics of
malicious interactions to those of benign interactions. One
possible strategy is to manipulate the structures of our knowl-
edge graph (KG) to perform adversarial attacks on GNNs.
While such attacks have shown potential on network graphs
(e.g., citation network) [76], [77], we argue that they are less
effective on the KG as system auditing provides a significantly
more constrained setting for KG perturbations [22]. Especially,
attackers cannot add an edge between two files or arbitrarily
delete system entity interactions (e.g., /etc/passwd interacting
with 146.153.68.151:80 to exfiltrate data) without affecting
attacks. Interesting future work would be designing specialized
adversarial attacks for system auditing analysis.
False Alarm. A well-known limitation of anomaly-based de-
tection is generating high false-positive rates (FPRs). SHADE-
WATCHER inherits this by detecting anomalous system entity
interactions as cyber threats. However, as we demonstrate
in Table IV, SHADEWATCHER achieves acceptable FPRs
(below 0.5%) considering that it produces much finer-grained
detection signals than existing anomaly detectors. Although,
at first glance, Unicorn [21] generates a lower FPR on the
DARPA TC dataset, it analyzes cyber threats at the granularity
of behaviors that are very large and difficult to interpret in
practice. Counterintuitively, the high FPR is also a major
concern for specification-based detectors [78], although such
detection, in theory, would raise fewer false positives by rigid
attack matching. For example, RapSheet [14] reports a 2.2%
FPR for identifying APT kill chains in provenance graphs.

One approach to mitigating false positives is adopting threat
alarm triage techniques [79], the goal of which is to rank
true alarms higher than false alarms before manual investi-
gation. For example, we can integrate SHADEWATCHER with
NoDoze [11] to assign a threat score for individual malicious
system entity interactions so that analysts can focus on the
most anomalous ones to accelerate incident response.

X. RELATED WORK

System Auditing. System auditing has recently attracted
increasing attention due to its deep visibility into advanced
cyber-attacks [80]–[82]. Extensive literature exists on col-
lecting and storing whole-system audit data effectively and
reliably [7], [8], [44], [83]–[85]. Although auditing is widely
supported in modern SIEM [3]–[5], audit record analysis is
still limited to two fundamental challenges: 1) as audit records
capture low-level system calls, the volume of audit data is
typically too overwhelming for analysts to investigate. Recent
work aims to decrease the overall number of audit records
by data reduction [6], [46] and graph compression [47], [86],
[87]; 2) as each audit record is conservatively considered
dependent on all the preceding records, system causality
analysis may suffer from the dependency explosion problem
(especially in the case of analyzing long-running processes).
To address dependency explosion, researchers have explored

different techniques to provide precise system provenance,
which include execution unit partition [45], [67], [88], [89],
dynamic tainting [90], [91], modeling-based inference [92],
[93], record-and-replay systems [9], [94], and application
log fusing [39], [95], [96]. Although the scope of SHADE-
WATCHER is different from these solutions, both noisy record
reduction and accurate causality tracking help improve the
quality of system entity interactions for cyber threat analysis.

Forensic investigation and intrusion detection are the ul-
timate objectives of system auditing. Recent studies have
attempted to facilitate attack forensics by prioritizing causal-
ity tracking [10], [24], improving threat queries [97]–[99],
and abstracting high-level behaviors [31]. Moreover, current
attack detection approaches can be roughly categorized into
three directions: statistical analysis [11], [21], specification
matching [16], [17], [19] and learning-driven prediction [22],
[73], which we elaborate on in § II-B.

Knowledge Graph-based Recommendation. Recommenda-
tions play an important role in a wide range of user-oriented
applications to capture user preference on items. As a prevalent
solution, collaborative filtering extracts behavioral patterns
of users from historical user-item interactions to infer user
preference [28], [100]. Going beyond the interaction data, re-
searchers introduce a knowledge graph (KG), which offers rich
content relatedness among items and supplements behavioral
similarity among users to enhance the recommendation per-
formance. Current work on KG-based recommendation falls
into three research lines: 1) embedding-based methods [55],
[101], which focus on first-order connectivity in a KG and
derive knowledge-aware embeddings [33], [52] as the contents
of items to enrich item representations; 2) path-based methods,
which consider higher-order connectivity in the KG and extract
multi-hop paths connecting the target user and items by brute-
force searching [102], meta-path matching [103], or rein-
forcement learning [104]; 3) GNN-based methods [29], [30],
which employ graph neural network (GNN)’s information
propagation and aggregation mechanisms to encode higher-
order connectivity into the representations of users and items.
By identifying different-order connectivities in audit records,
SHADEWATCHER provides the first recommendation system
that detects cyber threats via predicting the preferences of
system entities on interactions.

XI. CONCLUSION

In this paper, we present a recommendation-guided cyber
threat detection system, SHADEWATCHER. It takes the first
step to bring the benefits of recommendations to audit record
analysis. By exploiting first-order and high-order information
in audit records, SHADEWATCHER models preferences of
a system entity on its interactive entities and recommends
adversarial interactions. We evaluate SHADEWATCHER against
two datasets of real-life APT campaigns and simulated cyber-
attacks. Results show that SHADEWATCHER detects threats
with high accuracy and 0.332% and 0.137% false alarm rates.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful
comments. We also thank Kaihang Ji, Zijun Yin, Zhaoying
Li, and Sihao Diao for feedback on early drafts of this
paper. Some of the experiments were conducted using the
infrastructure of National Cybersecurity R&D Laboratory,
Singapore. This research is supported by the National Research
Foundation, Singapore under its Industry Alignment Fund –
Pre-positioning (IAF-PP) Funding Initiative. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not reflect the views
of National Research Foundation, Singapore.

REFERENCES

[1] “Equifax Information Leakage,” https://en.wikipedia.org/wiki/Equifax.
[2] “SolarWinds: How Russian spies hacked the Justice, State, Treasury,

Energy and Commerce Departments,” https://www.cbsnews.com/news/
solarwinds-hack-russia-cyberattack-60-minutes-2021-02-14/, 2021,
online; Accessed 17 August 2021.

[3] “Datadog: Modern monitoring & security,” https://www.datadoghq.
com/, 2021, online; Accessed 5 May 2021.

[4] “Logrhythm,” https://logrhythm.com, [n.d.], online; Accessed 9 March
2021.

[5] “Splunk,” https://docs.splunk.com/Documentation/CIM/4.19.0/User/
SplunkAuditLogs, 2020, online; Accessed 5 May 2021.

[6] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in ACM CCS, 2016.

[7] A. Gehani and D. Tariq, “Spade: support for provenance auditing in
distributed environments,” in Proceedings of the 13th International
Middleware Conference, 2012.

[8] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the linux kernel,” in USENIX Security, 2015.

[9] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and
W. Lee, “Rain: Refinable attack investigation with on-demand inter-
process information flow tracking,” in ACM CCS, 2017.

[10] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security.” in NDSS,
2018.

[11] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage.” in NDSS, 2019.

[12] W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, D. Wang, Z. Chen,
Z. Li, J. Rhee, J. Gui et al., “This is why we can’t cache nice
things: Lightning-fast threat hunting using suspicion-based hierarchical
storage,” in ACSAC, 2020.

[13] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” in IEEE Security and Privacy, 2019.

[14] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis
for endpoint detection and response systems,” in IEEE Security and
Privacy, 2020.

[15] X. Jiang, A. Walters, D. Xu, E. H. Spafford, F. Buchholz, and Y.-
M. Wang, “Provenance-aware tracing ofworm break-in and contamina-
tions: A process coloring approach,” in IEEE ICDCS, 2006.

[16] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. Stoller, and V. Venkatakrishnan, “Sleuth: Real-time attack
scenario reconstruction from cots audit data,” in USENIX Security,
2017.

[17] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence
explosion in forensic analysis using alternative tag propagation seman-
tics,” in IEEE Security and Privacy, 2020.

[18] B. Zong, X. Xiao, Z. Li, Z. Wu, Z. Qian, X. Yan, A. K. Singh,
and G. Jiang, “Behavior query discovery in system-generated temporal
graphs,” in VLDB, 2015.

[19] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“POIROT: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in ACM CCS, 2019.

[20] S. Wang, Z. Chen, X. Yu, D. Li, J. Ni, L.-A. Tang, J. Gui, Z. Li,
H. Chen, and S. Y. Philip, “Heterogeneous graph matching networks
for unknown malware detection.” in IJCAI, 2019.

[21] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,” in
NDSS, 2020.

[22] X. Han, X. Yu, T. Pasquier, D. Li, J. Rhee, J. Mickens, M. Seltzer, and
H. Chen, “Sigl: Securing software installations through deep graph
learning,” in USENIX Security, 2021.

[23] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. Gunter et al., “You are what you do: Hunting stealthy
malware via data provenance analysis,” in NDSS, 2020.

[24] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,
and D. Xu, “Atlas: A sequence-based learning approach for attack
investigation,” in USENIX Security, 2021.

[25] S. Rule, “SIEM rules ignore bulk of MITRE ATT&CK framework,”
https://www.scmagazine.com/news/network-security/siem-rules-
ignore-bulk-of-mitre-attck-framework-placing-risk-burden-on-users,
2021, online; Accessed 10 March 2021.

[26] T. van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, M. Cova,
A. Continella, M. van Steen, A. Peter, C. Kruegel, and G. Vi-
gna, “DeepCASE: Semi-Supervised Contextual Analysis of Security
Events,” in IEEE Security and Privacy, 2022.

[27] X. He and T.-S. Chua, “Neural factorization machines for sparse
predictive analytics,” in ACM SIGIR, 2017.

[28] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” in ACM SIGIR, 2019.

[29] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge
graph attention network for recommendation,” in ACM KDD, 2019.

[30] X. Wang, T. Huang, D. Wang, Y. Yuan, Z. Liu, X. He, and T.-S.
Chua, “Learning intents behind interactions with knowledge graph for
recommendation,” in ACM WWW, 2021.

[31] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “Watson:
Abstracting behaviors from audit logs via aggregation of contextual
semantics,” in NDSS, 2021.

[32] “MITRE TA0010: Exfiltration,” https://attack.mitre.org/tactics/TA0010,
2020, online; Accessed 15 March 2020.

[33] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and
relation embeddings for knowledge graph completion,” in AAAI, 2015.

[34] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[35] “Transparent Computing Engagement 3 Data Release,” https://github.
com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md,
[n.d.], online; Accessed 10 March 2020.

[36] A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara, “The taser intrusion
recovery system,” in SOSP, 2005.

[37] “MITRE T1204: User Execution,” https://attack.mitre.org/techniques/
T1204, 2020, online; Accessed 15 March 2020.

[38] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie, “Self-
supervised graph learning for recommendation,” in ACM SIGIR, 2021.

[39] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omega-
log: High-fidelity attack investigation via transparent multi-layer log
analysis,” in NDSS, 2020.

[40] H. Ragib, R. Sion, and M. Winslett, “The case of the fake picasso:
Preventing history forgery with secure provenance,” in FAST, no. 2009.

[41] R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging to the
danger zone: Race condition attacks and defenses on system audit
frameworks,” in ACM CCS, 2020.

[42] R. Paccagnella, P. Datta, W. U. Hassan, A. Bates, C. Fletcher, A. Miller,
and D. Tian, “Custos: Practical tamper-evident auditing of operating
systems using trusted execution,” in NDSS, 2020.

[43] “Linux Kernel Audit Subsystem,” https://github.com/linux-audit/
audit-kernel, [n.d.], online; Accessed 10 March 2021.

[44] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi:
collecting high-fidelity whole-system provenance,” in ACSAC, 2012.

[45] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI:
Multiple perspective attack investigation with semantic aware execution
partitioning,” in USENIX Security, 2017.

[46] K. H. Lee, X. Zhang, and D. Xu, “Loggc: garbage collecting audit
log,” in ACM CCS, 2013.

[47] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee,
F. Xu, and Q. Li, “Nodemerge: template based efficient data reduction
for big-data causality analysis,” in ACM CCS, 2018.

https://en.wikipedia.org/wiki/Equifax
https://www.cbsnews.com/news/solarwinds-hack-russia-cyberattack-60-minutes-2021-02-14/
https://www.cbsnews.com/news/solarwinds-hack-russia-cyberattack-60-minutes-2021-02-14/
https://www.datadoghq.com/
https://www.datadoghq.com/
https://logrhythm.com
https://docs.splunk.com/Documentation/CIM/4.19.0/User/SplunkAuditLogs
https://docs.splunk.com/Documentation/CIM/4.19.0/User/SplunkAuditLogs
https://attack.mitre.org/tactics/TA0010
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://attack.mitre.org/techniques/T1204
https://attack.mitre.org/techniques/T1204
https://github.com/linux-audit/audit-kernel
https://github.com/linux-audit/audit-kernel

[48] H. Irshad, G. Ciocarlie, A. Gehani, V. Yegneswaran, K. H. Lee, J. Patel,
S. Jha, Y. Kwon, D. Xu, and X. Zhang, “Trace: Enterprise-wide
provenance tracking for real-time apt detection,” IEEE Transactions
on Information Forensics and Security, 2021.

[49] “Postgresql Relational Database,” https://www.postgresql.org, 2021,
online; Accessed 25 March 2020.

[50] “Elasticsearch NoSQL Database,” https://www.elastic.co/elasticsearch,
2021, online; Accessed 18 November 2021.

[51] “Your window into the Elastic Stack,” https://www.elastic.co/kibana,
2021, online; Accessed 18 November 2021.

[52] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in
NeurIPS, 2013.

[53] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in AAAI, 2014.

[54] H. Wang, F. Zhang, X. Xie, and M. Guo, “Dkn: Deep knowledge-aware
network for news recommendation,” in ACM WWW, 2018.

[55] Y. Cao, X. Wang, X. He, Z. Hu, and T.-S. Chua, “Unifying knowledge
graph learning and recommendation: Towards a better understanding
of user preferences,” in ACM WWW, 2019.

[56] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf:
Social influence prediction with deep learning,” in ACM KDD, 2018.

[57] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, 2017.

[58] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge net-
works,” in ICML, 2018.

[59] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” UAI, 2009.

[60] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender
systems with social regularization,” in ACM WSDM, 2011.

[61] “Apache Kafka,” https://kafka.apache.org/, 2019, online; Accessed 21
July 2021.

[62] J. Khoury, T. Upthegrove, A. Caro, B. Benyo, and D. Kong, “An event-
based data model for granular information flow tracking,” in USENIX
TaPP, 2020.

[63] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in OSDI, 2016.

[64] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[65] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” in The journal of machine learning research, 2014.

[66] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010.

[67] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance
via binary-based execution partition.” in NDSS, 2013.

[68] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck, “Dos and don’ts of machine
learning in computer security,” in USENIX Security, 2022.

[69] “DARPA Transparent Computing,” https://www.darpa.mil/program/
transparent-computing, 2014, online; Accessed 12 March 2020.

[70] “CVE-2020-15778,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-15778, 2020, online; Accessed 9 March 2020.

[71] P. Rodrı́guez, M. A. Bautista, J. Gonzalez, and S. Escalera, “Beyond
one-hot encoding: Lower dimensional target embedding,” in Image and
Vision Computing, 2018.

[72] X. Yi, Z. Luo, C. Meng, M. Wang, G. Long, C. Wu, J. Yang, and
W. Lin, “Fast training of deep learning models over multiple gpus,” in
Proceedings of the 21st International Middleware Conference, 2020.

[73] T. Chen, L.-A. Tang, Y. Sun, Z. Chen, and K. Zhang, “Entity
embedding-based anomaly detection for heterogeneous categorical
events,” in IJCAI, 2016.

[74] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in ACM CCS,
2017.

[75] M. Du, Z. Chen, C. Liu, R. Oak, and D. Song, “Lifelong anomaly
detection through unlearning,” in ACM CCS, 2019.

[76] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on
neural networks for graph data,” in KDD, 2018.

[77] B. Wang and N. Z. Gong, “Attacking graph-based classification via
manipulating the graph structure,” in CCS, 2019.

[78] ““How Many Alerts is Too Many to Handle?” https://www.fireeye.com/
offers/rpt-idc-the-numbers-game.html, 2014, online; Accessed 4 April
2021.

[79] C. Zhong, J. Yen, P. Liu, and R. F. Erbacher, “Automate cybersecu-
rity data triage by leveraging human analysts’ cognitive process,” in
BigDataSecurity. IEEE, 2016.

[80] S. T. King and P. M. Chen, “Backtracking intrusions,” in SOSP, 2003.
[81] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching

intrusion alerts through multi-host causality.” in NDSS, 2005.
[82] F. Wang, Y. Kwon, S. Ma, X. Zhang, and D. Xu, “Lprov: Practical

library-aware provenance tracing,” in ACSAC, 2018.
[83] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,

“Provenance-aware storage systems.” in USENIX ATC, 2006.
[84] T. F.-M. Pasquier, J. Singh, D. Eyers, and J. Bacon, “Camflow:

Managed data-sharing for cloud services,” in IEEE Transactions on
Cloud Computing, 2015.

[85] T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers, J. Ba-
con, and M. Seltzer, “Runtime analysis of whole-system provenance,”
in ACM CCS, 2018.

[86] W. U. Hassan, L. Aguse, N. Aguse, A. Bates, and T. Moyer, “Towards
scalable cluster auditing through grammatical inference over prove-
nance graphs,” in NDSS, 2018.

[87] M. N. Hossain, J. Wang, O. Weisse, R. Sekar, D. Genkin, B. He,
S. D. Stoller, G. Fang, F. Piessens, E. Downing et al., “Dependence-
preserving data compaction for scalable forensic analysis,” in USENIX
Security, 2018.

[88] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for windows,”
in ACSAC, 2015.

[89] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting.” in NDSS, 2016.

[90] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, 2005.

[91] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in ACM CCS, 2007.

[92] Y. Kwon, D. Kim, W. N. Sumner, K. Kim, B. Saltaformaggio,
X. Zhang, and D. Xu, “Ldx: Causality inference by lightweight dual
execution,” in ASPLOS, 2016.

[93] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. F. Ciocarlie et al., “MCI: Modeling-based causality
inference in audit logging for attack investigation.” in NDSS, 2018.

[94] Y. Ji, S. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim, A. Orso,
and W. Lee, “Enabling refinable cross-host attack investigation with
efficient data flow tagging and tracking,” in USENIX Security, 2018.

[95] R. Yang, S. Ma, H. Xu, X. Zhang, and Y. Chen, “Uiscope: Accurate,
instrumentation-free, and visible attack investigation for gui applica-
tions,” in NDSS, 2020.

[96] L. Yu, S. Ma, Z. Zhang, G. Tao, X. Zhang, D. Xu, V. E. Urias, H. W.
Lin, G. Ciocarlie, V. Yegneswaran et al., “Alchemist: Fusing application
and audit logs for precise attack provenance without instrumentation,”
in NDSS, 2021.

[97] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “AIQL:
Enabling efficient attack investigation from system monitoring data,”
in USENIX ATC, 2018.

[98] P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R.
Kulkarni, and P. Mittal, “SAQL: A stream-based query system for
real-time abnormal system behavior detection,” in USENIX Security,
2018.

[99] P. Fei, Z. Li, Z. Wang, X. Yu, D. Li, and K. Jee, “Seal: Storage-efficient
causality analysis on enterprise logs with query-friendly compression,”
in USENIX Security, 2021.

[100] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in ACM WWW, 2017.

[101] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Ma, “Collaborative
knowledge base embedding for recommender systems,” in ACM KDD,
2016.

[102] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T. Chua, “Explainable
reasoning over knowledge graphs for recommendation,” in AAAI, 2019.

[103] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu, “Leveraging meta-path based
context for top- N recommendation with A neural co-attention model,”
in ACM KDD, 2018.

https://www.postgresql.org
https://www.elastic.co/elasticsearch
https://www.elastic.co/kibana
https://kafka.apache.org/
https://www.darpa.mil/program/transparent-computing
https://www.darpa.mil/program/transparent-computing
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15778
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15778
https://www.fireeye.com/offers/rpt-idc-the-numbers-game.html
https://www.fireeye.com/offers/rpt-idc-the-numbers-game.html

[104] Y. Xian, Z. Fu, S. Muthukrishnan, G. de Melo, and Y. Zhang,
“Reinforcement knowledge graph reasoning for explainable recommen-
dation,” in ACM SIGIR, 2019.

[105] A. Tsymbal, “The problem of concept drift: definitions and related
work,” in Computer Science Department, Trinity College Dublin, 2004.

[106] A. Roy and S. Pan, “Incorporating extra knowledge to enhance word
embedding.” in IJCAI, 2020.

[107] N. Michael, J. Mink, J. Liu, S. Gaur, W. U. Hassan, and A. Bates, “On
the forensic validity of approximated audit logs,” in ACSAC, 2020.

APPENDIX A
DISCUSSION OF ONLINE DETECTION.

We currently design SHADEWATCHER to perform offline
cyber threat analysis similar to existing intrusion detection
systems (e.g., [11], [14], [21]). As our offline implementation
can process large-scale system entity interactions within sec-
onds, it is already possible for SHADEWATCHER to perform
real-time analysis. However, adapting SHADEWATCHER to an
online approach brings new challenges. For example, similar
to most learning approaches using embedding techniques,
SHADEWATCHER must retrain its embedding space over time
for new system entities. This phenomenon is well known
as concept drift [105]. One potential solution is to take
morphological knowledge [106] of system entities (e.g., file
path, owner, and privileges) into consideration to generalize
and capture the semantics of previously unobserved entities.
We leave this optimization as future work.

APPENDIX B
NOISE REDUCTION

To cut down irrelevant or redundant audit records in the
casual analysis of cyber threats, we adopt several noise re-
duction techniques from previous work while constructing a
provenance graph. Specifically, Causality Preserved Reduc-
tion [6] (CPR) aims to aggregate audit records with identical
provenance impact scope. For example, in Figure 1a, gtcache
receives network packages from 146.153.68.151:80 220 times
for a single data transfer operation. As the absence of re-
dundant receive activities does not alter any data provenance,
CPR merges them and only keeps the first occurrence. Ad-
ditionally, recent work [46] discovers that system activities
on specific files are not helpful for provenance analysis. For
example, applications regularly create temporary files to store
intermediate results and delete them after termination. As
these files exclusively interact with a single process during
their lifecycle, they are of no interest for causal analysis and
can be safely eliminated. Another type of noisy record to
be removed comes from interactions with read-only libraries
during the process initialization [47]. Towards this end, we
define a whitelist of trusted libraries and remove them if not
affecting the correctness of the causal analysis.

Figure 9 shows the number of edges in provenance graphs
before and after using different noise reduction techniques.
We observe that SHADEWATCHER cuts off around 95% and
65% edges on the TRACE and Simulated datasets compared
with the original provenance graphs. Since SHADEWATCHER
removes a large volume of noisy audit records, the quality of
system entity interactions is significantly improved for cyber

Ed

ge
s [

m
ill

io
n]

Origin C C+T C+T+L

(a) TRACE dataset

Ed

ge
s [

lo
g-

sc
al

e]

Origin C C+T C+T+L

(b) Simulated dataset

Fig. 9: Effectiveness of different reduction techniques, where
C, T, and L represent causality preserved reduction, temporary
file reduction, and system library reduction, respectively.

threat detection. Note that our reduction statistics is not the
same as the recent study [107] due to different system entity
granularity levels as discussed in § VIII-A.

APPENDIX C
POSITIVE INTERACTION SAMPLING

For each system entity interaction observed in normal audit
records, we treat it as a negative (benign) instance. Then, we
randomly sample unobserved interactions as positive (poten-
tially malicious) instances. Notice that this sampling strategy
does not guarantee to generate malicious instances.

A similar phenomenon can be found in the recommenda-
tion domain. Typically, users are reluctant to express their
preferences on items, and recommendation systems have to
infer them from implicit user behaviors, such as clicks and
purchases. Nevertheless, the items that a user dislikes still
cannot be determined from user-item interactions. To address
this challenge, recommendation systems [29], [100], [102]
assume items with which a user never interacts to be disliked.
Although unobserved interactions do not yet indicate prefer-
ences4, it is an acceptable recommendation objective to rank
observed interactions higher than unobserved ones.

Since SHADEWATCHER performs anomaly detection, we
follow a similar assumption to recommend a higher probability
of being adversarial for unobserved system entity interac-
tions. To provide a deep understanding, we compare SHADE-
WATCHER’s detection effectiveness with and without sampled
positive interactions. The results are summarized in Table VIII.
We find that our sampling strategy brings significant detection
improvements. This is reasonable because a recommendation
model cannot differentiate between benign and malicious
interactions by training only on negative instances.

4The unobserved user-item interactions are a mixture of actual dislikes and
missing values (i.e., users may interact with an item in the future).

TABLE VII: Overview of attack scenarios in the TRACE and Simulated datasets.

Dataset Attack Scenario Description of Scenario

TRACE
Dataset

[48]

Extension Backdoor
An attacker exploits a target host via a vulnerable browser plugin pass-mgr. The compromised
plug-in downloads and executes a malicious program, which scans ports for internal recon and
exfiltrates sensitive information.

Firefox Backdoor
A malicious ad server exploits Firefox to execute an in-memory payload. This provides a remote
console to exfiltrate sensitive information. A cache process is also exploited and displays similar
behaviors as the compromised Firefox.

Pine Backdoor Pine is compromised by a malicious executable to scan ports for internal recon and establish
a connection to the attacker’s machine.

Phishing Executable An attacker sends a malicious executable as an e-mail attachment to exploit a vulnerability in
Pine. However, the attack fails even though a user manually downloads and runs the executable.

Simulated
Dataset

Configuration Leakage [31] A downloaded txt file leverages the code executable vulnerability in vim to collect machine
configuration for future system compromise preparation.

Content Destruction [36] An insider tampers with classified programs and documents.
Cheating Student [70] A student compromises OpenSSL service in a teaching assistant’s server to steal exam answers.

Illegal Storage [36] An attacker creates a directory in another user’s home directory and uses it to store illegal files.

Passwd Gzip Scp [6] An attacker steals user account information from /etc/passwd file, compresses it using gzip, and
transfers the data to a remote machine using ssh service.

Passwd Reuse [31] An administrator reads encrypted user password from /etc/shadow file, decodes it with John, and
uses the plaintext to log in on other applications.

/etc/passwd cache 180.156.107.146:80

/proc/pid/stat

firefox /proc/sys/vm/overcommit_memory

/etc/group

!!
!! !!

!"

!!
!!

(a) Provenance Graph

/etc/passwd cache 180.156.107.146:80

/proc/pid/stat

firefox /proc/sys/vm/overcommit_memory

/etc/group

2.17

1.46 / -2.51

-7.33

-1.96 / 0.95

-2.66 -4.17

(b) Bipartite Graph

Fig. 10: Recommendations on the Firefox Backdoor.

TABLE VIII: Impact of positive interaction sampling on
detection. Positive Rate (PR) shows the ratio of sampled
positive instances to negative interactions. We use PR=2 to
report experimental results in § VIII due to the best accuracy.

Positive
Rate

TRACE Dataset
Precision Recall F1 Score Accuracy

0 0% 0% 0% 0.008
1 100% 99.90% 0.9995 0.9990
2 99.98% 99.99% 0.9998 0.9996
3 99.63% 99.97% 0.9980 0.9959

APPENDIX D
AUDIT DATA COLLECTION

To collect whole-system audit data, we use the Linux
Audit [43] with the following system calls: read, write, open,
close, mq open, openat, unlink, link, linkat, unlinkat, rmdir,
mkdir, rename, pipe, pipe2, dup, dup2, fcntl, clone, fork, vfork,
execve, kill, sendto, recvfrom, sendmsg, sendmmsg, recvmsg,
recvmmsg, connect, socket, and getpeername.

Although we implement SHADEWATCHER to take inputs
from Linux Audit, it can also be extended to support other
audit sources: CamFlow [85] for Linux, ETW for Windows,
and Dtrace for FreeBSD.

APPENDIX E
ATTACK SCENARIO DESCRIPTION

Table VII presents the overview of attack scenarios in the
TRACE and Simulated datasets. Note that the original TRACE

dataset consists of five APT attacks. However, because Phish-
ing Email is invisible in audit records [17], we do not include
it in the evaluation. More specifically, once a user visits a
phishing website and enters credentials, subsequent system
activities would be identical to normal workloads. Therefore,
system auditing by nature cannot detect Phishing Email.

APPENDIX F
CASE STUDY ON FIREFOX BACKDOOR

In this incident, Firefox is compromised by a malicious
ad server to steal sensitive user information. Then, multiple
cache processes are launched and display similar behaviors.
As the provenance of cache is missing in the original TRACE
dataset [17], we only capture the malicious behavior rooted at
/etc/passwd for the second part of the attack in Figure 10a.

Firefox Backdoor generates a total of 251 system entity
interactions, eight of which are manually labeled as cyber
threats. Figure 10b illustrates SHADEWATCHER’s recommen-
dation results. The only false negative comes from the in-
teraction between /etc/password and one of the seven cache
processes. We also see that the interaction between /etc/passwd
and 180.156.107.146:80 is given a very high probability (2.17)
to be adversarial, which matches our intuition that sensitive
files normally do not interact with public networks. Another
interesting observation is that SHADEWATCHER generates 12
false-positive interactions with /proc/pid/stat. By looking into
these false alarms, we discover that they are all associated

git clone

cc1

/tmp/x.s

as

/tmp/x.o

ld

exploit

exploit.c

dash (a)

exploitServ-Udash (b)

dash (c)

id chmod rm

project.c

!!

!" !" !! !" !! !"
!# !$

!$!$

!$

!$

!$!$
!%

Phase II: After Privilege Escalation

Phase I: Before Privilege Escalation

Fig. 11: A simplified provenance graph of Content Destruction,
where r8 denotes delete. Dash (a), dash (b), and dash (c) are
/bin/dash with different command-line arguments: “-sh”, “sh
-c chmod u+s /home/test/CVE; id; echo ‘opening root shell’;
/bin/sh;”, and “/bin/sh”.

with files that are rarely accessed in a running system (e.g.,
/proc/2457/stat). This reveals a limitation of our first-order
modeling, which differentiates system entities via the nuance
of contextual information. In particular, SHADEWATCHER
cannot uncover side information of entities without rich con-
texts. One possible solution to improve SHADEWATCHER’s
effectiveness is incorporating morphological knowledge (e.g.,
file path) to help capture entity semantics. Nevertheless, ob-
taining high-quality representations of system entities is a
separate research topic that requires non-trivial efforts. For
example, it is challenging to determine useful features from
numerous entity attributes and effectively integrate them into
the final representations. While morphological information
is not considered in this study, our proposed knowledge
graph provides a unified representation that can conveniently
combine different sources of knowledge from system auditing.

APPENDIX G
ATTACK WITH PRIVILEGE ESCALATION

Recall that after an attacker escalates privilege on a host,
he/she can tamper with audit data at will to cover attack
footprints. However, as mentioned in § III-B, the attacker
has no way of manipulating previous audit records that have
tracked the evidence of privilege escalation via a variety of
secure auditing solutions (e.g., centralized auditing servers).
Therefore, it is necessary to explore the effectiveness of a
detection system in a scenario where the only audit records
available are the ones from before privilege escalation.

Towards this end, we evaluate how SHADEWATCHER per-
forms on audit data before the attacker escalates privilege in
Content Destruction. In this scenario, an attacker exploits a
local privilege escalation vulnerability of SolarWinds Serv-
U5 to get a root shell and delete classified files. The attack
is launched in two phases. In the first phase, the attacker

5https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12181

Embedding Space

System Entity

Entity

Delete

Write
Create

Read

/etc/cron.daily/libvirt-bin
/etc/passwd

Fig. 12: Visualizing system entity embeddings with t-SNE.

downloads (git) the source code of an exploit and compiles
(gcc) it to an executable (exploit). Then, the attacker runs
the executable (./exploit) to open a root shell (dash). In
the second phase, the attacker adopts the privileged shell to
discover (ls) and delete (rm) sensitive data (project.c) on
the victim’s machine. A simplified provenance graph built
upon Content Destruction is shown in Figure 11, where the
attacker’s activities before and after privilege escalation are
separated into two boxes, namely, Phase I and Phase II.

To evaluate SHADEWATCHER on audit data before privilege
escalation, we perform threat detection on 46 system entity
interactions extracted from Phase I in Figure 11. Two of
46 interactions that exploit the Serv-U vulnerability (i.e.,
exploit.c r0−→Serv-U and exploit.c r0−→/bin/dash (b)) are labeled
as malicious. Observe that in Table IX, both malicious inter-
actions are recommended with high probabilities (well beyond
-0.5) of being adversarial. Additionally, SHADEWATCHER
predicts the rest of the interactions in Phase I as benign
activities. The experimental results verify our hypothesis in
§ III-B that even without audit data after privilege escalation,
SHADEWATCHER still can detect cyber threats by identifying
system entity interactions used for escalating privileges.

TABLE IX: Recommendations on two malicious system entity
interactions before privilege escalation.

Initiator Target Score
/home/test/CVE/exploit.c /usr/local/Serv-U/Serv-U 4.65
/home/test/CVE/exploit.c /bin/dash (b) 4.70

APPENDIX H
VISUALIZATION OF SYSTEM ENTITY EMBEDDING.

We use the t-SNE technique to visualize TransR’s em-
bedding spaces on a two-dimensional plane. In particu-
lar, Figure 12 shows the embeddings of /etc/passwd and
/etc/cron.daily/libvirt-bin in entity and relation spaces. The
entity space intuitively reflects the embeddings of TransE
and TransH. We can observe that 1) /etc/passwd has various
representations when involved in read, write, create, and delete
relations; and 2) /etc/passwd and /etc/cron.daily/libvirt-bin are
nearby in the entity space but far away from each other
in specific relation spaces. The visualization confirms that
TransR captures intrinsic characteristics of system entities in
the contexts of different relations, while TransE and TransH
cannot compare the difference.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12181

	Introduction
	Background & Motivation
	Motivating Example
	Challenge to Existing Solutions
	Threat Detection as Recommendation

	Problem Definition
	Basic Concept
	Problem Statement

	ShadeWatcher Overview
	Knowledge Graph Builder
	Provenance Graph Construction
	Interaction Extraction

	Recommendation Model
	Modeling the First-order Information
	Modeling the Higher-order Information
	Learning to Detect Threats
	Model Adaption

	Implementation
	Evaluation
	Dataset
	Effectiveness
	Comparison Analysis
	Model Adaptability
	Efficiency
	Case Study

	Discussion & Limitation
	Related Work
	Conclusion
	References
	Appendix A: Discussion of Online Detection.
	Appendix B: Noise Reduction
	Appendix C: Positive Interaction Sampling
	Appendix D: Audit Data Collection
	Appendix E: Attack scenario description
	Appendix F: Case Study on Firefox Backdoor
	Appendix G: Attack with Privilege Escalation
	Appendix H: Visualization of System Entity Embedding.

