PALANTIR: Optimizing Attack Provenance with
Hardware-enhanced System Observability

Jun Zeng®, Chuqi Zhang”, and Zhenkai Liang
ACM CCS, November 2022
Los Angeles, U.S.A.

Advanced Cyber Attacks in Enterprises

$1.7 million in NFTs stolen in apparent
phishing attack on OpenSea users

©

/ Two hundred and fifty-four ie customers’ names,

tokens were stolen over roughly

three hours people affected

Businesses risk ‘catas]
Private insurance compa
report from the GAO

Another T-Mobile cyberattack reportedly
exposed customer info and SIMs

/ Documents say the company
has contacted impacted
customers

By MITCHELL CLARK
Dec 29, 2021, 7:30 AM GMT+8 | [0 Commen ts / O New

y f &

System Auditing:
the Foundation of Attack Investigation

* System auditing records OS-level events
(system entity interactions)

e e.g., system call syscall_read ()1

Process

File System

|
|

syscall=read exit=0x100 a0=0x3 al=... ... nid=12566 auid=chugiz sess=6150
- | type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64

System Auditing:
the Foundation of Attack Investigation

* System auditing records OS-level events
(system entity interactions)

* e.g., system call syscall_read ()

Process

e Audit logs can be used for:

v Root cause analysis File System

v Ramification discovery

|
|

syscall=read exit=0x100 a0=0x3 al=... ... nid=12566 auid=chugiz sess=6150
- | type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64

Provenance Graph from Audit Logs

1. bash, read, malicious.sh sh :l malicious.sh txt || /share/file

2.bash, clone, cp read Mpread
3.cp, rez?d, /etc/pass\,.ud ‘ ash C,O,,P}iE nginx
4.cp, write, /share/file I
5.nginx, pread, /share/file — %d WriteVl
6. nginx, writev, 172.26.187.19 txt || /etc/passwd @ 172.26.187.19 /

——

v/ Provenance Graph constructs the overall attack scenario
by combining historic audit logs!

Provenance Graph from Audit Logs

1. bash, read, malicious.sh .shilmalicious.sh Axt
2.bash, clone, cp read write pread
3.cp, read, /etc/passwd clon :E :[:

: : ‘ bash —>
4.cp, write, /share/file & i ngmx
5.nginx, pread, /share/file — read writev
6.nginx, writev, 172.26.187.19 | [4q]] @ /

v/ Provenance Graph constructs the overall attack scenario
by combining historic audit logs!

Challenges of Provenance Tracking

Simplified code for a web server program

while ((connection_t *) conn) { Lots of
request t *r = conn->req; Iterations

int fd = open(r->req_file);
read(fd, r->buf, ..);
send(conn->sock_fd, r->buf, ..);

file1

file_n

Challenges of Provenance Tracking

Simplified code for a web server program

// handle connections

while ((connection_t *) conn) {
request_t *r = conn->req;
// handle reqguested file
int fd = onen(r->req _file);
read(fd, r->buf, ..);
send(conn->sock_fd, r->buf,

ey
f:xzifl\

)

Lots of
iterations

file1

file_n

a
————— k
—’
”
”
-
-
Fo

rward Tracking -

CAN NOT identify the correct descendant. Dependency Explosion
X No conclusion of TRUE provenance. Problem !

Related Work

* Execution Unit Partitioning [NDSS'13, Security’16, NDSS'21, ...]:
 Partition program into units by instrumentation or built-in application logs
* Intrusive to program or error-prone units

* Causality Inference [AsPLOS’16, NDSS'18, ...]:

* Train a causality model based on dual execution to infer true dependencies
* Inadequate for high-concurrency programs

* Record-and-Replay [ccs'17, Security’18, ...]:

* Record non-deterministic program behaviors and replay with taint analysis
* Fine-grained but intrusive to program, and incur high overhead

v Ideal Solution:
* Non-intrusive to program (i.e., instrumentation free)

* Fine-grained (i.e., pinpoint dependency) provenance

Motivation: Enhance Observability

* Audit log ONLY records OS-level events => coarse-grained provenance

X NO fine-grained provenance (program data flow) iy

X _ — [fitex — fite.i

— [secret file_n
_/
X server ﬁ

*.Q
QL | @ Pn |
O X =

| P2 |

b

(Y

Motivation: Enhance Observability

* Audit log ONLY records OS-level events => coarse-grained provenance
X NO fine-grained provenance (program data flow)

— | file2
X - — | file1 — | file_i

— [secret file_n
_/
X server ﬁ

C X\

0"“ _ IP_n

&=

." o —

* o Motivation: Enhance audit logs with program data flow to achieve
high system observability

b

Motivation: Enhance Observability

* Audit log ONLY records OS-level events => coarse-grained provenance
X NO fine-grained provenance (program data flow)

— | file2
— | filei — | file_i

(fd, -:—')*i
(conn->sock_fd, y)

Enhance system observability
(with program data flow)

* o Motivation: Enhance audit logs with program data flow to achieve
high system observability

Fine-grained Provenance

* Ideal observability: Enhance the provenance with syscall-to-syscall taints
(i.e., instruction-level data flow)

* Enhance observability and resolve fine-grained provenance:

Fine-grained Provenance

* Ideal observability: Enhance the provenance with syscall-to-syscall taints
(i.e., instruction-level data flow)

* Enhance observability and resolve fine-grained provenance:

@

@

3)
3

o/
Control flow tracing: trace
runtime execution history

&/
Data flow analysis: recover

syscall-to-syscall taints

Optimization: incorporate
audit logs with the taints

while

(Hrequegk— r = ->req;
ing = open();
\ .

SYSCALL=read
FILE=filel

SYSCALL=read
FILE=secret

r
S

end<—\’7

) @ »
€..);

read() i r'eaig

send() send()
SYSCALL=send SYSCALL=send
IP=/PO IP=/P1

secret filel

server

Core Design Ideas for Efficiency

@ Control flow tracing (@ Data flow analysis
Online program runtime recording Offline computationally expensive analysis
v Insight: Hardware Tracing v Insight: Static Taint Summary
=> Intel® Processor Tracing (PT) => Pre-summarize taint propagation logic per
to trace control flow transfer basic block via static binary analysis
v/ Trivial runtime overhead v’ Segregate offline analysis cost
v’ Non-intrusive to prog rim Binary Static Taint Summary
P PT
,rfcess pacxets QAijov buf, bufl) buf<)@—(\ >bu-F1 h
— read(.., buf,..) .
\jmp B) static readM[bufll

decode| N analysis N
P4 <I§jmov buf2, buf ® bU'FZQ<_O b‘d‘c
— send(.., buf2,..) bufl
[bUfl](Squend

y,

Execution Trace: A sequence of basic blocks _ y,

PALANTIR: System Overview

Offline Analysis

Binary Pre-processing

!

@tatic Taint Summary\

oo gllo®

| lollgallo?

- | J

Process

-

-

.

Runtime Monitoring

System Auditing

| read | oo | send |

+
Processor Tracing

e

~

Provenance Analysis

Enhancement

Input: Binary (Process at runtime)

Enhanced Provenance

SN
& & ®

Output: Observability-enhanced provenance graph

Running Example: Provenance Enhancement

Static Taint Summary

()

A \@\ \@ \
d\\ ﬁ\\ ﬁid

rea : I

M) \ 7\ J,

\ J
Binary Process)
- _————p L XX]
(-» BIN
while ((connection_t *) conn) { Execution trace
request_t *r = conn->req; from PT
int fd = open(r->req_file);

read(fd, r-sbuf, .); svscALL=read | [|| sYscALL=send
send(conn->sock_fd, r->buf, ..); | FILE=filei IP_ADDR=/Pi

}

Audit logs from system auditing)

Running Example: Provenance Enhancement

Static Taint Summary Observability-Enhanced Provenance Graph
) 4)

Process

-_———

I I
I I
while ((connection_t *) conn) { : Execution trace :
[[

request_t *r = conn->req; from PT S <
int fd = - file); x n : : -
igad(fd, ??S&S;,)i??‘ 1ie) SYSCALL=read SYSCALL=send v Fme-gramed Provenance is
send(conn->sock_fd, r=>buf, .); FLEe PADDREY optimized with instruction-level

| Audit logs from system auditing Observability

Evaluation Settings

* Evaluation Aspects

* How efficient is PALANTIR at attack investigation?

 What is the runtime performance of PALANTIR?

e Evaluation Dataset

* Four real-world cyber-attacks simulated in a testbed:
Watering-hole, Data Leakage, Insider Threat, and Phishing Email

* SPEC CPU 2006 benchmarks & real-world common programs

Attack Investigation

* |dentify true causality among system events and dependencies

Attadf Program Audit Logs PT Packets Inve-stlgatlon
Scenario Time (s)

Watering Wget 10,256 62,175,669 1,329,321,333 12.05
Hole Nginx 1,830 401,708 5,160,695 2.86
Data Curl 10,309 1,882,471 17,516,456 9.39

Leakage Pure-ftpd 25,562 21,402,396 2,833,740,916 2.85

Insider Cp 1,814 134,161 1,048,907 0.20
Threat Lighttpd 4,800 499,995 5,448,715 0.58
P};';Z'irl‘g Sendmail 29,433 7,488,895 120,264,352 18.09

[v/ PALANTIR achieves a high efficiency in attack investigation]

Attack Investigation - Comparison

e Compare with Dynamic Information Flow Tracking (DIFT)-based system

Attack Investigation Time (s)
. Program
Scenario PALANTIR RTAG

Watering Wget 12.05 67.93
alellc Nginx 2.86 37.50 R7aG [Security’18]
Curl 9.39 50.03
LeZigage oy * Record-and-replay
Pure-ftp 2.85 78.16 o
 DIFT with libdft
Insider Cp 0.20 0.89
Threat Lighttpd 0.58 12.13
PASAIE Sendmail 18.09 238.20
Email

{ v/ PALANTIR reduces 77%-96% time from DIFT-based provenance tracking J

Runtime Performance

Runtime Overhead on SPEC CPU 2006 benchmarks Runtime Overhead on real-world programs
30% :
[Runtime Overhead _ [Runtime Overhead
25% 1 15% 4
20% 1| Average: 4.5% overhead Average: 3.7% overhead |
/|
10% |
15% - 4
. Y -
10% 1 4
° 5% 1 4
o /| /]
1 / /) i
0% m m [—J I;l . PI ma H 74 S | H H . | a 0% — H . ’7/l _— H . / . m 14 =
) \Q'\’ @(’5’ é\é é&o ,\Qb $ A@A @Q}) Q,QQ" Qx,& @s} ,&Q @@ ‘;}é Q—\-O’ $ ’b{\b Q,"g' 6\9\‘6 @5;\0* 6((\?;\\ &\Qd O\‘\ @%e& \e\x\Qé" \(\x’&Qé x&é w1 \\x\Qd e('a%e’
PO b T N LS TIPS ELS RS O Q© W @ T W
NS PR " é,)‘b’ o\:,'b & £) 6‘\% KRS E S Q

[v/ PALANTIR’s hardware PT incurs <5% runtime-overhead for processor tracing]

Conclusion

* We propose PALANTIR:

* Optimize attack provenance by hardware-enhanced system observability

* Resolve dependency explosion by using instruction-level data flow

* Insights

* Hardware-assisted approach provides efficient runtime performance

* Static taint summarization can segregate offline overhead

