
PALANTIR: Optimizing Attack Provenance with 
Hardware-enhanced System Observability

Jun Zeng*, Chuqi Zhang*, and Zhenkai Liang
ACM CCS, November 2022

Los Angeles, U.S.A.



09/10/2022, 10:45 Samsung says a data breach revealed some customers’ names, birthdays, and more - The Verge

https://www.theverge.com/2022/9/2/23334580/samsung-data-breach-us-names-birthdays-contact-info 1/4

TECH / SAMSUNG / SECURITY

Samsung says a data breach revealed some customers’ names,
birthdays, and more / It’s sending emails to people affected

By MITCHELL CLARK
Sep 3, 2022, 1:37 AM GMT+8

0 Comments / 0 New

Illustration by Alex Castro / The Verge

Menu

Samsung is warning customers about a cybersecurity incident in July, where “an
unauthorized third party acquired information from some of Samsung’s U.S.
systems,” including things like names, birthdays, contact info, and product
registration information. The company says it discovered the breach on August
4th, and is currently investigating it with “a leading outside cybersecurity firm.”

According to the company’s FAQ about the incident, it’s sending emails to
customers who were specifically affected, and it will continue doing so as its
investigation progresses. Samsung says that not everybody will have had the

09/10/2022, 10:48 0ktapus phishing campaign has attacked over 130 companies - The Verge

https://www.theverge.com/2022/8/26/23323036/phishing-scam-campaign-twilio-hack-companies 1/7

TECH / SECURITY

A huge phishing campaign has targeted over 130 companies,
affecting Twilio and Signal / DoorDash, Best Buy, and AT&T were
also targeted

By JESS WEATHERBED
Updated Aug 27, 2022, 2:26 AM GMT+8

0 Comments

If you buy something from a Verge link, Vox Media may earn a commission. See our ethics statement.

The 0ktapus phishing campaign is one of the best-executed security attacks of
this scale to date. Illustration by Alex Castro / The Verge

Menu

Over 130 organizations, including Twilio and DoorDash, have been potentially
compromised by hackers as part of a months-long phishing campaign
nicknamed “0ktapus” by security researchers. Login credentials belonging to
nearly 10,000 individuals were stolen by attackers who imitated the popular
single sign-on service Okta, according to a report from cybersecurity outfit
Group-IB.

09/10/2022, 10:53 Businesses risk ‘catastrophic financial loss’ from cyberattacks, US watchdog warns - The Verge

https://www.theverge.com/2022/6/23/23180115/gao-infrastructure-catastrophic-financial-loss-cyberattacks-insurance 1/5

POLICY / TECH / SECURITY

Businesses risk ‘catastrophic financial loss’ from cyberattacks, US watchdog warns /
Private insurance companies increasingly limit coverage against major cyber threats, per a
report from the GAO

By CORIN FAIFE / @corintxt
Jun 24, 2022, 12:05 AM GMT+8

0 Comments

Photo by Amelia Holowaty Krales / The Verge

Menu

A government watchdog has warned that private insurance companies are increasingly backing out of
covering damages from major cyberattacks — leaving American businesses facing “catastrophic financial
loss” unless another insurance model can be found.

The growing challenge of covering cyber risk is outlined in a new report from the Government
Accountability Office (GAO), which calls for a government assessment of whether a federal cyber insurance
option is needed.

The report draws on threat assessments from the National Security Agency (NSA), Office of the Director of
National Intelligence (ODNI), Cybersecurity and Infrastructure Security Agency (CISA), and Department of
Justice to quantify the risk of cyberattacks on critical infrastructure, identifying vulnerable technologies that
might be attacked and a range of threat actors capable of exploiting them.

Citing an annual threat assessment released by the ODNI, the report finds that hacking groups linked to
Russia, China, Iran, and North Korea pose the greatest threat to US infrastructure — along with certain non-
state actors like organized cybercriminal gangs.

Advanced Cyber Attacks in Enterprises



System Auditing: 
the Foundation of Attack Investigation

• System auditing records OS-level events
(system entity interactions)
• e.g., system call Userspace

Kernel

syscall_read ()

Process

File System

type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64
syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150

type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64
syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150

syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150
type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64

Audit

Intercept!



System Auditing: 
the Foundation of Attack Investigation

• System auditing records OS-level events
(system entity interactions)
• e.g., system call

• Audit logs can be used for:
✓ Root cause analysis
✓ Ramification discovery 

Userspace

Kernel

syscall_read ()

Process

File System

type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64
syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150

type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64
syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150

syscall=read exit=0x100 a0=0x3 a1=… ... pid=12566 auid=chuqiz sess=6150
type=SYSCALL msg=audit(30/01/22 12:56:15.383:98866813) arch=x86_64

Audit

Intercept!



Provenance Graph from Audit Logs

…
1. bash, read, malicious.sh
2. bash, clone, cp
3. cp, read, /etc/passwd
4. cp, write, /share/file
5. nginx, pread, /share/file
6. nginx, writev, 172.26.187.19
…

bash

malicious.sh.sh

read

cpclone

172.26.187.19
writev

/share/file.txt

write

/etc/passwd.txt

read

nginx

pread

✓ Provenance Graph constructs the overall attack scenario
by combining historic audit logs!



…
1. bash, read, malicious.sh
2. bash, clone, cp
3. cp, read, /etc/passwd
4. cp, write, /share/file
5. nginx, pread, /share/file
6. nginx, writev, 172.26.187.19
…

bash

malicious.sh.sh

read
clone nginx

pread

Provenance Graph from Audit Logs

✓ Provenance Graph constructs the overall attack scenario
by combining historic audit logs!

/etc/passwd.txt

read

/share/file.txt

write

172.26.187.19
writev

cp



Challenges of Provenance Tracking

// handle connections
while ((connection_t *) conn) {

request_t *r = conn->req;
// handle requested file
int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

}
…

Simplified code for a web server program

server

Lots of
iterations

secret

IP

file_i

IP_i

file2

IP2

file_n

IP_n

IP1

file1



// handle connections
while ((connection_t *) conn) {

request_t *r = conn->req;
// handle requested file
int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

}
…

IP1

IP_n

IP2

IP

server

Challenges of Provenance Tracking

Simplified code for a web server program

file1
file2

file_i

IP_i

file_nsecretLots of
iterations

Forward Tracking



// handle connections
while ((connection_t *) conn) {

request_t *r = conn->req;
// handle requested file
int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

}
…

IP1

IP_n

IP2

IP

server

Challenges of Provenance Tracking

Simplified code for a web server program

file1
file2

file_i

IP_i

file_nsecretLots of
iterations

CAN NOT identify the correct descendant.
✘ No conclusion of TRUE provenance.

Dependency Explosion
Problem !

Forward Tracking



Related Work 

• Execution Unit Partitioning [NDSS’13, Security’16, NDSS’21, …]:

• Partition program into units by instrumentation or built-in application logs
• Intrusive to program or error-prone units

• Causality Inference [ASPLOS’16, NDSS’18, …]:

• Train a causality model based on dual execution to infer true dependencies 
• Inadequate for high-concurrency programs

• Record-and-Replay [CCS’17, Security’18, …]:

• Record non-deterministic program behaviors and replay with taint analysis
• Fine-grained but intrusive to program, and incur high overhead



• Execution Unit Partitioning [NDSS’13, Security’16, NDSS’21, …]:

• Partition program into units by instrumentation or built-in application logs
• Intrusive to the program or error-prone units

• Causality Inference [ASPLOS’16, NDSS’18, …]:

• Train a causality model based on dual execution to infer true dependencies 
• Rely on source code and is inadequate for high-concurrency programs

• Record-and-Replay [CCS’17, Security’18, …]:

• Record non-deterministic program behaviors and replay with taint analysis
• Fine-grained but intrusive to program, and incur high overhead

Related Work

💡 Ideal Solution:
• Non-intrusive to program (i.e., instrumentation free)
• Fine-grained (i.e., pinpoint dependency) provenance 



• Audit log ONLY records OS-level events => coarse-grained provenance
✘ NO fine-grained provenance (program data flow)

server

IP

file_i

IP_i

file2

IP2

file_n

IP_n

IP1

file1

Motivation: Enhance Observability

secret
✘

✘



server

IP

file_i

IP_i

file2

IP2

file_n

IP_n

IP1

file1

Motivation: Enhance Observability

secret
✘

✘

• Audit log ONLY records OS-level events => coarse-grained provenance
✘ NO fine-grained provenance (program data flow)

•💡Motivation: Enhance audit logs with program data flow to achieve
high system observability



• Audit log ONLY records OS-level events => coarse-grained provenance
✘ NO fine-grained provenance (program data flow)

•💡Motivation: Enhance audit logs with program data flow to achieve
high system observability

read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

Motivation: Enhance Observability

server

secret

IP

file_i

IP_i

file2

IP2

file_n

IP_n

IP1

file1

Enhance system observability
(with program data flow)

✓
send

read



Fine-grained Provenance

• Ideal observability: Enhance the provenance with syscall-to-syscall taints 
(i.e., instruction-level data flow)
• Enhance observability and resolve fine-grained provenance:



Fine-grained Provenance

• Ideal observability: Enhance the provenance with syscall-to-syscall taints 
(i.e., instruction-level data flow)
• Enhance observability and resolve fine-grained provenance:

Control flow tracing: trace 
runtime execution history

1
Data flow analysis: recover 
syscall-to-syscall taints

2
Optimization: incorporate 
audit logs with the taints 

3

while
request_t *r = conn->req;
int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

1

2
read()

send()

read()

send()

SYSCALL=read
FILE=secret

SYSCALL=send
IP=IP0

SYSCALL=read
FILE=file1

SYSCALL=send
IP=IP1

3

server

IP0 IP1

file1secret

read

send send

read



Core Design Ideas for Efficiency

Online program runtime recording

TNT TIP

TNT TNT

TNT TIP

…

PT packets

Offline computationally expensive analysis 

💡Insight: Hardware Tracing
=> Intel® Processor Tracing (PT)

to trace control flow transfer
✓ Trivial runtime overhead
✓ Non-intrusive to program

Intel PT

Process

💡Insight: Static Taint Summary
=> Pre-summarize taint propagation logic per

basic block via static binary analysis
✓ Segregate offline analysis cost

Control flow tracing1 Data flow analysis2

Execution Trace: A sequence of basic blocks

mov buf, buf1
read(…, buf,…)
jmp B

mov buf2, buf
send(…, buf2,…)
…

A

B

Binary
buf buf1

read [buf1]

buf2 buf

[buf1] send

A

B =

buf1

Static Taint Summary

static
analysisdecode



PALANTIR: System Overview

Provenance Analysis

Enhancement

readreadread readreadsend

Input: Binary (Process at runtime)
Output: Observability-enhanced provenance graph 

BIN

Binary Process

Static Taint Summary

Binary Pre-processing

Offline Analysis

read

send

read

send

Enhanced Provenance
Processor Tracing

System Auditing

LOGread LOGsend

Runtime Monitoring

+

...



Running Example: Provenance Enhancement

SYSCALL=read
FILE=file1

SYSCALL=read
FILE=file1

SYSCALL=read
FILE=filei SYSCALL=read

FILE=file1
SYSCALL=read
FILE=file1

SYSCALL=send
IP_ADDR=IPi

while ((connection_t *) conn) {
request_t *r = conn->req;
int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

}
...

C

send

E

read

A

X B D
...

Process A E

B
read

send

Audit logs from system auditing

Execution trace
from PT

Static Taint Summary

BIN

Binary



Running Example: Provenance Enhancement

SYSCALL=read
FILE=file1

SYSCALL=read
FILE=file1

SYSCALL=read
FILE=filei SYSCALL=read

FILE=file1
SYSCALL=read
FILE=file1

SYSCALL=send
IP_ADDR=IPi

while ((connection_t *) conn) {
request_t *r = conn->req;
int fd = open(r->req_file);
read(fd, r->buf, …);
send(conn->sock_fd, r->buf, …);

}
...

BIN

Binary

read

A

B
...

Process A E

B
read

send

send

E

B

Audit logs from system auditing

Execution trace
from PT

send

E

read

A

Static Taint Summary

file1

file2

filei

secret

IP1 IPi

IP0

server

IP2

...

...

Observability-Enhanced Provenance Graph

Annotated with taints!
(Indicated by different colors)

✓ Fine-grained Provenance is 
optimized with instruction-level 

Observability



Evaluation Settings

• Evaluation Aspects

• How efficient is PALANTIR at attack investigation?

• What is the runtime performance of PALANTIR?

• Evaluation Dataset

• Four real-world cyber-attacks simulated in a testbed:
Watering-hole, Data Leakage, Insider Threat, and Phishing Email

• SPEC CPU 2006 benchmarks & real-world common programs



Attack Investigation

• Identify true causality among system events and dependencies

PT Storage Cost (MB) to trace web servers (10,000 requests)
Attack 

Scenario Program Audit Logs PT Packets Instructions Investigation
Time (s)

Watering
Hole

Wget 10,256 62,175,669 1,329,321,333 12.05

Nginx 1,830 401,708 5,160,695 2.86

Data
Leakage

Curl 10,309 1,882,471 17,516,456 9.39

Pure-ftpd 25,562 21,402,396 2,833,740,916 2.85

Insider
Threat

Cp 1,814 134,161 1,048,907 0.20

Lighttpd 4,800 499,995 5,448,715 0.58

Phishing
Email Sendmail 29,433 7,488,895 120,264,352 18.09

✓ PALANTIR achieves a high efficiency in attack investigation



Attack Investigation - Comparison

• Compare with Dynamic Information Flow Tracking (DIFT)-based system
Attack 

Scenario Program
Investigation Time (s)

PALANTIR RTAG

Watering
Hole

Wget 12.05 67.93

Nginx 2.86 37.50

Data
Leakage

Curl 9.39 50.03

Pure-ftpd 2.85 78.16

Insider
Threat

Cp 0.20 0.89

Lighttpd 0.58 12.13

Phishing
Email Sendmail 18.09 238.20

✓ PALANTIR reduces 77%-96% time from DIFT-based provenance tracking

RTAG [Security’18] 

• Record-and-replay 
• DIFT with libdft



Runtime Performance 

0%

5%

10%

15%

Var
nish

d
Ngi

nx
Pro

ftpd Cur
l
Wg

et
Http

d
Ligh

ttpd

Pur
e-ft

pd Cp Zip
Tht

tpd
Ave

rage

Sen
dm

ail
0%

5%

10%

15%

20%

25%

30%

40
1.b
zip
2

40
3.g
cc

42
9.m

cf
43
3.m

ilc
44
4.n
am
d

44
5.g
ob
mk

45
3.p
ov
ray

45
6.h
mm

er
45
8.s
jen
g

46
2.l
ibq
ua
ntu

m
46
4.h
26
4re

f

47
0.l
bm

47
1.o
mn

etp
p

47
3.a
sta
r

48
2.s
ph
inx
3

48
3.x
ala
nc
bm

k
99
8.s
pe
cra
nd

Av
era
ge

Runtime Overhead on SPEC CPU 2006 benchmarks Runtime Overhead on real-world programs

Average: 3.7% overheadAverage: 4.5% overhead

✓ PALANTIR’s hardware PT incurs <5% runtime-overhead for processor tracing 



Conclusion

• We propose PALANTIR:

• Optimize attack provenance by hardware-enhanced system observability

• Resolve dependency explosion by using instruction-level data flow

• Insights
• Hardware-assisted approach provides efficient runtime performance

• Static taint summarization can segregate offline overhead


