
Dr
aft

Empowering Practical Root Cause Analysis by

Large Language Models for Cloud Incidents

Yinfang Chen⋄§, Huaibing Xie⋄¶, Minghua Ma∗, Yu Kang∗, Xin Gao∗, Liu Shi∗, Yunjie Cao∗
Xuedong Gao∗, Hao Fan∗, Ming Wen†, Jun Zeng‡, Supriyo Ghosh∗, Xuchao Zhang∗
Chaoyun Zhang∗, Qingwei Lin∗, Saravan Rajmohan∗, Dongmei Zhang∗, Tianyin Xu§

Microsoft∗, UIUC§, PKU¶ , HUST†, NUS‡

Abstract

Ensuring the reliability and availability of cloud services
necessitates efficient root cause analysis (RCA) for cloud
incidents. Traditional RCA methods, which rely on man-
ual investigations of data sources such as logs and traces,
are often laborious, error-prone, and challenging for on-call
engineers. In this paper, we introduce RCACopilot, an in-
novative on-call system empowered by the Large Language
Model for automating RCA of cloud incidents. RCACopilot
matches incoming incidents to corresponding handlers based
on their alert types, aggregates the critical runtime diagnos-
tic information, predicts the incident’s root cause category,
and provides an explanatory narrative. We evaluate RCA-
Copilot using a real-world dataset consisting of a year’s
worth of incidents from Transport service in Microsoft. Our
evaluation demonstrates that RCACopilot achieves RCA ac-
curacy up to 0.766. Furthermore, the diagnostic information
collection component of RCACopilot has been successfully
in use at Microsoft for over four years.

CCS Concepts: • Computer systems organization →
Cloud computing; • Software and its engineering →
Maintaining software.

Keywords: Root Cause Analysis, Large Language Models,
Cloud Systems

1 Introduction

Cloud computing serves as an indispensable infrastructure
for numerous applications and services upon which peo-
ple rely daily. As the adoption of cloud services continues
to grow, ensuring their reliability, availability, and security
becomes increasingly vital [12, 26, 30]. However, the com-
plexity of cloud systems makes them vulnerable to a variety
of incidents that could pose significant challenges to these
crucial properties [43]. A typical incident life-cycle consists
of four stages: (1) Detection [31, 41, 42]: When an anomalous
system behavior is observed, an alert is raised by monitors

⋄ This research was primarily conducted during an internship at Microsoft
Research Asia.

or users of the service (internal engineers or external cus-
tomers). (2) Triaging [4, 8, 9]: After the detection, the inci-
dent is assigned to the appropriate engineering team after
an initial assessment. (3) Diagnosis [28]: Assigned on-call
engineers (OCEs) inspect different aspects of the incident
and have several rounds of back-and-forth communication to
identify the root cause. (4) Mitigation [1, 17]: Several actions
are taken by OCEs to mitigate the incident and to restore
service health.

Root cause analysis (RCA) is pivotal in promptly and effec-
tively addressing these incidents. By accurately diagnosing
the underlying problem and preventing its recurrence, RCA
not only restores service availability swiftly but also fortifies
the overall reliability of cloud services. However, identifying
the root causes of these incidents often represents a daunting
and time-consuming task that requires significant human
expertise and intervention [30].
Traditional approaches to cloud incident RCA typically

involve the manual collection and analysis of various types
of data, such as logs [16, 22, 25, 46, 47], metrics [32], traces
[45], and incident tickets [17, 36]. This manual process is not
only laborious and error-prone, but can also be challenging
due to varying levels of available information - what we term
as the ‘information spectrum’. The ‘information spectrum’
describes a continuum of information availability, ranging
from situations with too little information to those inundated
with an excess. At either end of this spectrum, root cause
analysis can become particularly challenging. The relevant
information for RCA might be buried within the voluminous
data, leading to an information overload for OCEs. OCEs
may find it challenging to quickly pinpoint the relevant in-
formation amidst the sea of data, hindering efficient incident
resolution. Conversely, OCEs could also encounter situations
where they lack the necessary information to understand
and address the root causes of incidents accurately. Beyond
these challenges, the collected data itself is often noisy, in-
complete and inconsistent, further complicating the RCA
process.

Specifically, the engineering team documents the frequent
troubleshooting steps in the form of troubleshooting guides
(TSGs) to facilitate the handling of future incidents. However,
the volume of TSGs is overwhelming for OCEs, making the
search for the most relevant guide a time-consuming task
that might cause system downtime. Moreover, TSGs struggle

1

Dr
aft

2023, ACM, arXiv Yinfang et.al.

to keep pace with the ever-evolving nature of cloud systems,
thus often falling short when new incident types emerge.
Even when a relevant TSG is located, it may not cover all
the intricacies of the specific incident. This could be due to
variations in system configurations, the presence of multiple
interacting root causes, or previously unknown issues.
At the heart of RCA lies the fundamental challenge of

efficiently collecting and interpreting comprehensive, incident-
specific data within a limited time frame. OCEs must quickly
discern the relevance of various data types to the incident at
hand and interpret them correctly. However, the complex-
ity and sheer volume of data generated by cloud systems
often impede rapid decision-making. Furthermore, the ex-
pertise required to analyze various data types, along with
the diverse range of possible incident causes, exacerbates
the difficulty of the task. As a result, OCEs may spend an
inordinate amount of time analyzing data and formulating
hypotheses, detracting from time that could be better spent
resolving the incident and restoring system functionality.
Data-driven and Artificial Intelligence (AI) techniques

have been leveraged for automating the incident manage-
ment [9, 10]. While there are existing techniques that recom-
mends relevant TSGs [17] and automates the workflows [36]
of TSGs, their utility is limited by the inherent challenges
associated with TSGs. Despite these automated processes,
OCEs still find themselves investing significant manual effort
in sifting through the vast amounts of information, interpret-
ing the data, and identifying the root causes of incidents.
The recent advent and success of Generative Pretrained

Transformer (GPT) models in performing complex tasks [5,
38], suggests a promising avenue for enhancing RCA. Specifi-
cally, GPT models can be used to parse through high-volume
data, discern relevant information, and produce succinct,
insightful outputs. This significantly alleviates the burden
on OCEs to manually sift through vast amounts of data,
helping them focus on resolving the incident more quickly
and effectively. Additionally, GPT models can adapt to new
and evolving types of incidents, learning from previous data
to improve future predictions. While GPT models can pro-
cess and generate text efficiently, they lack intrinsic domain-
specific knowledge, especially in specialized areas such as
cloud incident management. This lack of understanding of
specific contexts, such as cloud incidents, can limit their
accuracy in predicting incident root causes and generating
appropriate explanations.
Recently, Ahmed et. al. [1] proposed to finetune a pre-

trained GPT model with domain-specific dataset for gen-
erating root causes of an incident just by leveraging the
title and summary information available at the time of in-
cident creation. While they have demonstrated promises
of GPT models in incident root causing, finetuning posses
several limitations: (1) As accurate root cause analysis re-
quires various sources of complex unstructured data (e.g.,
logs, telemetry, traces), just using generic title and initial

summary information might miss useful signals to reach
to conclusive diagnosis details; (2) Finetuning is costly and
requires a huge volume of training samples, whereas we
only have access to a few hundred high-quality manually
labeled category information; (3) It is challenging to contin-
uously update a finetuned GPT model with evolving nature
and scope of incidents; therefore such models are prone to
generate more hallucinated results over time.

In this paper, we introduce RCACopilot, a novel approach
to cloud incident root cause analysis that shifts away from
the traditional reliance on TSGs. RCACopilot operates as
an on-call system, empowering OCEs to construct ‘handlers’
- automated workflows tailored to each alert type defined by
monitors, made up of reusable actions defined by their exper-
tise. These predefined handlers automatically streamline the
collection of incident-specific diagnostic information from
multiple sources, thus ensuring a more focused and relevant
data accumulation process to avoid issues on either end of
the information spectrum. Subsequently, the large language
model (LLM) component of RCACopilot processes this di-
agnostic data, autonomously identifying the categories and
providing explanations of incident root causes. The combi-
nation of bespoke handlers and the analytical capabilities
of the LLM allows RCACopilot to significantly enhance
adaptability and scalability in incident response. As a result,
RCACopilot can effectively handle a diverse array of in-
cident types while reducing the need for extensive human
intervention.

The diagnostic information collection component of RCA-
Copilot has been in use at Microsoft for over four years.
Recently, the root cause prediction component has been
prototyped and tested by some incident teams at Microsoft
before its final rolling in production.

Summary. This paper makes the following contributions:

• We propose RCACopilot, an automated tool for cloud
incident RCA that enables on-call engineers to construct
incident-specific automatic workflows for efficient data
collection from multiple sources.

• We introduce the integration of a large language model
within RCACopilot that autonomously analyzes the col-
lected diagnostic data to predict incident root cause cate-
gories and generate explanations, demonstrating the po-
tential of the large language model in enhancing RCA.

• We showcase the real-world applicability of RCACopilot
by presenting its successful adoption within Microsoft.
This illustrates its practical effectiveness in enhancing
RCA efficiency, demonstrating the feasibility and benefits
of our approach in real-world cloud computing scenarios.

2 Background and Motivation

In this section, we first introduce the concept and importance
of incident root cause analysis. We then present real-world

2

Dr
aft

Empowering Practical Root Cause Analysis by
Large Language Models for Cloud Incidents 2023, ACM, arXiv

Troubleshooting Guide for Poisoned Messages

1. Go to the Poisoned Message Dashboard. This page
gives a real-time, high-level view of the Poison Mes-
sage feature. The charts should indicate whether the
problem has resolved itself or is ongoing, as well as
some sense of where it is occurring . . .
2. The Dashboard newly implements an Exception Ta-
ble that has poisoned messages within a time frame.
In most cases, whatever exception is causing an alert
will rise to the top of the table . . .
3. You may also check the Poison Message Logs . . .
. . .

Figure 1. A TSG for a poisoned message incident.

examples of troubleshooting guides and illustrate their inher-
ent limitations. Lastly, we discuss the potential advantages
of integrating a large language model into the RCA process,
which motivates our work.

2.1 Incident Root Cause Analysis

In the realm of cloud services, an incident refers to any event
that disrupts normal service operations or causes degrada-
tion in the quality of services. When such incidents occur,
root cause analysis is performed to identify the underlying
issue causing the disruption.

RCA in cloud services is a multi-faceted process:

• Data Collection:Gathering relevant data from various sources
such as logs, metrics, traces, or alerts is the first step in
RCA.

• Data Analysis: The collected data is then analyzed to iden-
tify patterns, anomalies, or correlations that can possibly
provide clues about the root cause of the incident.

• Hypothesis Verification: Based on the data analysis, hy-
potheses about the possible root cause are formulated and
then verified by OCEs.

Given the complexity and dynamism nature of cloud sys-
tems, along with the immense volume of data involved, con-
ducting RCA is a challenging task, which requires substan-
tial expertise and time. Take the scale of our corporation’s
email service as an example, which delivers over 150 billion
messages daily. Ensuring the smooth operation of such a
large-scale service demands an efficient and effective RCA
approach. This is pivotal in maintaining a reliable and high-
performing communication infrastructure, particularly for
organizations that rely heavily on Microsoft’s email server
for their email communication.

2.2 The Opportunities and Challenges of

Multi-Source Data in Incident Management

Managing incidents in the complex ecosystem of cloud ser-
vices necessitates a comprehensive understanding of system
states. This comprehension often stems from the consolida-
tion of multi-source data, which includes traces, logs, and
metrics. Traces represent tree-structured data detailing the
flow of user requests, logs are semi-structured text recording
hardware and software events, while metrics monitor service
status or user-perceived metrics, forming time series data.
While these individual data sources yield valuable insights,
capitalizing on their potential has challenges. Traditional ap-
proaches such as TSGs, though useful, may fail to exploit the
full wealth of multi-source data due to inherent limitations.

2.2.1 Opportunities of Multi-Source Data. Different
data sources provide different perspectives on the system
state. For instance, logs can offer detailed event sequences,
metrics can reflect system performance over time, and traces
can reveal the propagation of requests across services. Inte-
grating these data sources can provide amore comprehensive
view of the system, enabling more accurate and efficient in-
cident diagnosis and resolution. Furthermore, multi-source
data can facilitate correlation and causality analysis, which is
crucial for root cause analysis. By analyzing the relationships
between different data sources, we can identify patterns and
anomalies that may indicate the root cause of an incident.

2.2.2 Challenges of Multi-Source Data. Despite its po-
tential, effectively leveraging multi-source data in incident
management is challenging. The sheer volume and com-
plexity of data from various sources can be overwhelming,
making it difficult to extract meaningful insights. Worse still,
different data sources may provide inconsistent or conflict-
ing information. Moreover, real-world data is often noisy,
which can complicate analysis and lead to false conclusions.

2.2.3 Limitations of TSGs. Traditional TSGs represent
an early attempt to leverage multi-source data for incident
management. They guide OCEs to gather and analyze data
from various sources to diagnose and resolve incidents. How-
ever, TSGs face several inherent limitations:
• Manual data integration: TSGs typically require OCEs to
gather data from different sources manually. This process
can be time-consuming and error-prone. Notwithstanding
the existence of diverse troubleshooting guides and TSG
recommendation techniques [17], dependence on TSGs
still remains a significant stress and burnout for OCEs due
to the inherent limitations of the manual process.

• Outdated information: TSGs, as static documents, often
struggle to stay up-to-datewith the evolving system changes
and new insights about incident root causes. This lag can
lead OCEs to follow outdated or suboptimal troubleshoot-
ing steps. For example, a new feature (“Exception Table”)
to check Poison Message exceptions, mentioned as the

3

Dr
aft

2023, ACM, arXiv Yinfang et.al.

second step in Figure 1, was not immediately incorporated
into the TSG upon its release, causing potential inefficien-
cies in incident resolution.

• Insufficient details and coverage: High-level instructions of-
ten appear in TSGs, lacking in detail and specific guidance,
which forces OCEs into additional research and prolongs
incident resolution. In the TSG example from Figure 1,
the third step instructs to check the Poison Message Logs,
leaving out crucial details and causing confusion for OCEs
unfamiliar with this incident type. Additionally, TSGs may
overlook common checks, such as disk space checks, lead-
ing to partial or inadequate incident resolutions.

2.3 The Promise of Large Language Models for

Incident Management

The rapid advancements in natural language processing and
machine learning have led to the development of powerful
LLMs, which are reported to be effective at various down-
stream tasks with zero-shot and few-shot training [5, 11].
These models have shown exceptional performance in trans-
lation, summarization, and question-answering. Leveraging
their potential for incident management in cloud comput-
ing systems could revolutionize the way OCEs identify and
resolve incidents. By automating the interpretation aspect
of incident management, LLMs can help alleviate the stress
and cognitive load associated with complex on-call tasks for
OCEs, which enables OCEs to focus more on higher-level
jobs and decision-making.

2.4 Our Motivation

The motivation for our work is rooted in the challenges faced
when using manual TSGs to diagnose incidents and identify
the underlying root causes. Recognizing the limitations of
manual TSGs, our goal is to develop an automated diagnostic
process that harnesses the capabilities of LLMs to address
various cloud incidents more effectively.

Different from previous work [36], which employs AI tech-
niques to generate automated workflow from existing TSGs,
our goal is to enable experienced OCEs to construct an auto-
mated pipeline for incident diagnosis. This approach allows
OCEs to be directly assisted in identifying the root cause
without the need to investigate intermediate diagnostic in-
formation, though they still have the option to do so.
We envision a future in which root cause analysis is pre-

dominantly automated, requiring minimal manual verifica-
tion only when necessary. Our approach seeks to provide
OCEs with timely, relevant, and accurate information for
specific incidents, leading to more efficient RCA.
By leveraging LLMs, our research aims to alleviate the

stress and cognitive load associated with incident manage-
ment, ultimately enhancing the efficiency and effectiveness
of OCEs in addressing incidents.

3 Insights from Incidents

We conducted a comprehensive study of the one-year in-
cidents from an email service from Microsoft, employing
rigorous qualitative analysis methods. Specifically, each inci-
dent was carefully reviewed and categorized based on the
characteristics of the problem, the source of the issue, and
the impact on the system by our experienced OCEs. We paid
particular attention to the root causes of the incidents, the
effectiveness of the response, and the recurrence of similar
issues. While our insights were indeed intuitively derived,
they were firmly grounded in empirical data and analysis.
Our study not only yielded valuable insights into incident
patterns and challenges but also informed the development
and refinement of our approach.

Insight 1: determining the root cause based on a single
data source can be challenging. As an illustration, con-
sider Incident 2 in Table 1, where a single server failed to
perform DNS resolution for incoming packets due to the
exhaustion of UDP hub ports on a front door machine. This
example highlights the difficulties in relying solely on a sin-
gle source (monitor alert) to diagnose complex issues.

When a mailbox server sends mail to external email recip-
ients, it uses specific front-door servers (proxies). However,
each front-door server has a limited number of available
SMTP outbound proxy connections. If a mailbox server’s
proxy connection request fails, it will be unable to send mes-
sages to external recipients. In this incident, the monitor first
raises an alert indicating detected failures when connecting
to the front door server. However, this alert only signifies a
connection issue between the mail server and the front door
server, without even suggesting a DNS resolution problem.
Consequently, the root cause remains unclear.

0 20 40 60 80 100 120
Time Interval (days)

0.00

0.02

0.04

0.06

Pr
ob

ab
ili

ty

Figure 2. Recurring incidents proportion vs. time interval.

Insight 2: incidents stemming from similar or iden-
tical root causes often recur within a short period. We
found that most recurring incidents (93.80%) tend to reappear
within a brief span of 20 days, as shown in Figure 2. For in-
stance, consider the category of Incident 9 from Table 1. This
type of incident, triggered by invalid customer configuration,

4

Dr
aft

Empowering Practical Root Cause Analysis by
Large Language Models for Cloud Incidents 2023, ACM, arXiv

No. Sev. Scope Category Occur. Symptom Cause

1 1 Forest AuthCertIssue 3 Tokens for requesting ser-
vices were not able to be cre-
ated. Several services reported
users experiencing outages.

A previous invalid certificate
overrided the existing one due
to misconfiguration.

2 2 Machine HubPortExhaustion 27 A single server failed to do
DNS resolution for the incom-
ing packages.

The UDP hub ports on the ma-
chine had been run out.

3 2 Forest DeliveryHang 6 Mailbox delivery service hang
for a long time.

Number of messages queued
for mailbox delivery exceeded
the limit.

4 2 Forest CodeRegression 15 An SMTP authentication com-
ponent’s availability dropped.

Bug in the code.

5 2 Forest CertForBogusTenants 11 The number of concurrent
server connections exceeded
a limit.

Spammers abused the system
by creating a lot of bogus ten-
ants with connectors using a
certificate domain.

6 1 Forest MaliciousAttack 2 Forest-wide processes crashed
over threshold.

Active exploit was launched
in remote PowerShell by seri-
alizing malicious binary blob.

7 2 Forest UseRouteResolution 9 Poisoned messages sent to the
forest made the system un-
healthy.

A configuration service was
unable to update the settings
leading to the crash.

8 2 Forest FullDisk 2 Many processes crashed and
threw IO exceptions.

A specific disk was full.

9 2 Forest InvalidJournaling 11 Messages stuck in submission
queue for a long time.

The customer set an invalid
value for the Transport con-
fig and caused TenantSet-
tingsNotFoundException.

10 3 Forest DispatcherTaskCancelled 22 Normal priority messages
across a forest had been
queued in submission queues
for a long time.

Network problem caused the
authentication service to be
unreachable.

Table 1. Examples of cloud incidents in different root cause categories.

led to an accumulation of unprocessedmessages in the queue,
thereby significantly undermining its availability. Intrigu-
ingly, incidents of this category recurred 11 times in a span
of merely 15 days. Likewise, the DispatcherTaskCancelled
incidents (No. 10 in Table 1) and the DeliveryHang incidents
(No. 3) reappeared 22 times and 6 times within a week and a
single month, respectively. These can be attributed to several
factors. Unresolved root causes from the initial response may
lead to the same issue re-emerging, especially if the prob-
lem is complex or not fully understood. Secondly, systemic
vulnerabilities, if not addressed, can be repeatedly exploited,
causing similar incidents. Thirdly, external dependencies,
such as reliance on a service that frequently experiences
outages, can also lead to recurring incidents. These patterns
suggest that by leveraging insights from previous incidents,
we could swiftly identify the root cause of new occurrences
with the same root cause.

1 2 3 4 5 6 7 8 9 >=10
Category Occurrence

0

30

60

90

120

150

C
ou

nt

Figure 3. Distribution of incident category frequency.

Insight 3: incidents with new root causes occur fre-
quently and pose a greater challenge to analyze. TSGs
can help OCEs diagnose issues by providing clear investi-
gation guidance. However, when incidents arise from new,

5

Dr
aft

2023, ACM, arXiv Yinfang et.al.

previously unencountered root causes, OCEs face a set of
challenges. For such incidents, no TSG exists, and OCEs may
struggle to identify the underlying issues. For instance, In-
cident 1 is a high-severity (severity 1) incident caused by
misconfiguration, which blocked the authentication token
generation to lead to severe outages. Similarly, Incident 6 is a
malicious attack caused by an attacker launching an exploit
with a malicious blob. This type of attack had never been
encountered before, leaving OCEs without an existing TSG
to reference. Lower severity level (severity 2) incidents, such
as Incident 5, are also susceptible to this challenge when the
spammer first abuses the system. As Figure 3 shows, inci-
dents with a new root cause category account for 24.96%
(163 among 653) of all incidents. If OCEs spend their time
searching for nonexistent TSGs, the incident’s impact could
escalate further. Recognizing this challenge, it is necessary
to propose a new approach that can effectively infer, catego-
rize and explain the root causes for such unseen incidents,
thereby reducing the time OCEs take to identify and address
these unique incidents.

4 RCACopilot

RCACopilot has two stages: the diagnostic information
collection stage and the root cause prediction stage as shown
in Figure 4.
Diagnostic information collection stage: This is the

initial stage, where the incident is parsed and matched to
the pre-defined incident handler. Each handler is tailored
to a specific alert type. Upon matching the incident with
the appropriate handler, RCACopilot proceeds to collect
relevant diagnostic data from a variety of sources.

Root cause prediction stage: Once the diagnostic infor-
mation is collected, RCACopilot transitions into the root
cause prediction stage. In this phase, RCACopilot applies
its predictive module to determine the likely root cause cat-
egory of the incident. This prediction is not a mere cate-
gorization, but it is also supplemented with an explanation
detailing how RCACopilot arrived at the given prediction.
Subsequently, the predicted category label is presented to
experienced OCEs for review.

4.1 Diagnostic Information Collection Stage

Driven by Insight-1 in Section 3, RCACopilot aims to collect
multi-source data for RCA. Specifically, for each alert type,
an incident handler is constructed, comprising a series of
actions to collect diagnostic information. Alert types are
used to categorize alerts based on specific monitors and
thresholds. Incidents sharing the same alert type exhibit
similar symptoms, though they may stem from different root
causes.
The RCACopilot incident handler is a workflow that

consists of a series of actions. Each action is a function that
can be executed to collect specific diagnostic information

from a target data source. OCEs can build and modify these
handlers based on their expertise. The handler includes three
distinct actions: scope switching action, query action, and
mitigation action, which will be explained in Section 4.1.2.
Each action generates an output, guiding the control flow
of the incident handler. We use a RCACopilot handler that
diagnoses Incident 7 in Table 1 as an example to illustrate
the handler usage.

4.1.1 Incident handler. The decision-making process that
OCEs employ when handling an incident resembles a deci-
sion tree’s control flow. The root node in the incident handler
is the incident alert type, which is gathered from the sys-
tem monitor. We distilled OCE operations into three actions
when constructing the incident handler. As OCE operations
can be similar to different incident types (e.g., conducting
a common disk check or query to a database), we designed
RCACopilot handler actions to be reusable across all han-
dlers. We also maintain the versions of the handlers in the
database, which can be used to track their historical changes.

RCACopilot’s incident handlers can be updated and mod-
ified dynamically by OCEs, allowing them to stay abreast
with the most recent system changes and newly discovered
root causes. For instance, when a new metric is introduced
into the system, OCEs only need to construct a new ac-
tion to collect the relevant data and incorporate it into the
corresponding incident handler, which can ensure timely
adaptation.

4.1.2 Handler action. RCACopilot leverages the syn-
ergy of multi-source data. The system uses predefined ac-
tions in the incident handler to automatically collect relevant
diagnostic information from diverse sources. The automated
integration of data not only saves time but also reduces the
likelihood of human error. It also provides a more compre-
hensive view of the system state, facilitating efficient and
accurate incident resolution. This significantly lightens the
workload of OCEs, reducing stress and burnout, and enhanc-
ing the effectiveness of the incident resolution process. The
action in the handler could be one of the following:

Scope switching action: This action facilitates precision
in RCA by allowing adjustments to the data collection scope
based on the specific needs of each incident. For instance, as
depicted in Figure 5, if an alert originates at the ‘forest’ level,
signifying an issue within a specific forest, and the problem
type is identified as ‘Busy Hub’, the scope switching action
can adjust the scope to the ‘machine’ level. This modification
allows for a more fine-grained investigation, specifically
assessing if a singular hub server is overly taxed.
The implementation of this action ensures that we effi-

ciently navigate the information spectrum. When the in-
vestigation requires a more targeted approach, this action
can narrow the data collection scope. Conversely, if a more
holistic view is necessary, it can widen the scope, say from a
single machine to an entire forest. This flexibility contributes

6

Dr
aft

Empowering Practical Root Cause Analysis by
Large Language Models for Cloud Incidents 2023, ACM, arXiv

DB
Store

diagnostic

info.

Load

handlers

Handler

Matching

Incident

Parsing

Info.

Collection

OCEsIncoming Incident

Title

OwingTenant

OwningTeam

ID

Incident

Summarization

Root cause

prediction

Incident 1

Incident 2

Incident K

Root cause category

and explanation

Collection Stage

Neighbor

Search

LLM

Diagnostic information

Summarized

diagnostic info.

LLM
Embedding

vector DB

Embedding

Find K Nearest

Prediction Stage

Figure 4. RCACopilot architecture.

to a more balanced and effective diagnostic data collection
process.
Query action: Query action can query data from differ-

ent sources and output the query result as a key-value pair
table. This type of action can also be hooked to executing a
specific script with pre-defined parameters. Usually, scripts
are internal automatic investigation tools for a service, and
only the service team has access to the tools.

For instance, in Figure 5, the “Known issue?” action node
queries the database to see whether the current incident is
a known one or not based on its alert messages. If it is a
known issue, execution flow will enter the “True” branch to
give mitigation actions directly. Otherwise, a query script
that can aggregate threads with the same stack traces will
be executed. It will obtain an instantaneous list of the stacks
on all the managed threads in the target process and then
group common stacks together in order to identify potential
deadlocks/blocking code paths in the process.

The query action can also output an enum value to decide
the next action node to execute, e.g., after getting the top
error message on the exception stack traces, i.e., "Get top
error msg" node, the next action node to be run depends on
the exception type. Based on the error messages, a specific
team will be reported and engaged, as shown in Figure 5.
Mitigation action: This action refers to the strategic

steps suggested to alleviate an incident, such as “restart ser-
vice” or “engage other teams”, as depicted in Figure 5. It’s
important to note that handlers do not always provide ex-
act mitigation strategies for every incident, due to handlers’
pre-defined nature, which may not cover all possible situa-
tions. For instance, Incident 4 in Table 1, categorized under
code regression, presents a case where identification and
rectification of such code issues can be challenging. In cases
where the incident handler is uncertain, it will only offer
intermediate diagnostic information to the OCEs without
mitigation.

4.1.3 Multi-source diagnostic information. RCACopi-
lot’s diagnostic information collection stage serves as a
valuable tool for OCEs by aggregating data from a myriad
of sources. OCEs only need to customize the action in the

handler to acquire the diagnostic information from a target
source. For instance, as illustrated in Figure 6, RCACopilot
can assimilate diverse data such as error logs, exception stack
traces, and socket metrics related to a specific incident. The
error log and exception stack trace alone does not provide
sufficient insight to identify the root cause of the incident.
However, when supplemented with the socket metrics, a
more comprehensive picture emerges. In this example, it is
clear that the UDP socket is exhausted, which is the root
cause.
In the case of new incidents, RCACopilot can perform

a range of common checks, such as evaluating the provi-
sioning status or analyzing thread stacks. This assists OCEs
in gaining a holistic understanding of the situation. Note
that the information collected is pre-defined in the actions
of the RCACopilot handler, ensuring that only relevant
data is gathered, thus avoiding overwhelming information
that is unnecessary. By providing this comprehensive diag-
nostic information, RCACopilot empowers OCE teams to
troubleshoot issues efficiently. They can use the gathered in-
formation as guidance to address incidents more effectively.

4.2 LLMs for Incident Explanation

Upon thorough investigation, each incident within our ser-
vice is manually assigned a root cause category by our sea-
soned OCEs. OCEs will use the categories to classify the
historical incidents and guide the new incoming incidents’
RCA. However, reasoning the incidents and inferring their
categories are time-consuming and potentially overwhelm-
ing for OCEs, who have a tight time budget. Given this, we
have identified the categorization of incident root causes as
our primary downstream task.
Recently, LLMs have demonstrated remarkable capabili-

ties in understanding the context of downstream tasks and
generating relevant information from demonstrations, mak-
ing them a possible choice for incident RCA. However, rea-
soning the incident root cause is not a simple task, and LLMs
may not be able to achieve the optimal results on long-tail or
domain-specific tasks without any guidance [6, 18]. Chain-of-
Thoughts (CoT) prompting is a gradient-free technique that

7

Dr
aft

2023, ACM, arXiv Yinfang et.al.

Determine

issue type

Get top error

msg

Switch scope to

single server

*recipient mailbox

location information is

not available*

Engage other

teams

*Deliver.Exception:MailboxOffli

neException.*

Report to a

specific team

Analyze single

busy server

Busy

Hub

Others

Known issue?

Busy Delivery/Recipient

Mitigation

actions

True

Get-

ThreadStackGroupi

ng.ps1
False

Check delivery

health

Delivery is restarted

recently?

Restart service

True

Collect diagnose

logs

Default

Default

Default

Figure 5. A RCACopilot handler for too many messages stuck in the delivery queue alert.

DatacenterHubOutboundProxyProbe probe log result from
[MachineID].
Total Probes: 2, Failed Probes: 2
Id Level Created Description
– —– ——- ———–
2 Error 11/21/2022 2:04:20 AM Probe result
2 Error 11/21/2022 1:49:20 AM Probe result

Failed probe error:
Name: No such host is known.
A WinSock error: 11001 encountered when connecting to
host: [HOST NAME]
Count: 2
. . .
Exceptions:
InformativeSocketException: No such host is known.
A WinSock error: 11001 encountered when connecting to
host: [HOST NAME]
at TcpClientFactory.Create(...)
at SimpleSmtpClient.Connect(...)
. . .
Total UDP socket count: 15276
Total UDP socket count by process and processId (top
5 only):
14923: Transport.exe, 203736
15: w3wp.exe, 102296
8: svchost.exe, 4748
7: Microsoft.Transport.Store.Worker.exe, 74060
7: Microsoft.Transport.Store.Worker.exe, 87724

Figure 6. Diagnostic information for hub port exhaustion.

elicits LLMs to generate intermediate reasoning steps that
lead to the final answer. In few-shots CoT prompting, a few
manual demonstrations that are composed of a question and
a reasoning chain that leads to an answer for each of them.
Inspired by the above ideas, diagnostic information provided
by RCACopilot handlers can be used as ingredients for the
reasoning process of the incidents.

4.2.1 Embedding model. Our observation is that the se-
mantics of incidents can be revealed from the context in which
the diagnostic information is described. A common approach

to extracting such contextual semantics involves the use of
embedding models. The objective is to map the diagnostic
information into an embedding space (i.e., numeric vector
space), where the distances between vectors represent the
semantic similarity of incidents. Choosing a computationally
efficient embedding model allows us to preserve accuracy
while handling a large number of incidents.

We employ FastText as our embedding model, which is
efficient, insensitive to text input length, and generates dense
matrices, making it easy to calculate the Euclidean distance
between similar vectors. Furthermore, since our downstream
task is domain-specific to the incident root cause reasoning,
and the incident-related information is internal to our com-
pany, we opt to train a FastText model on our historical inci-
dents rather than using a pre-trained large language model
as our embedding model, which is costly and inefficient. Ad-
ditionally, we provide users with the flexibility to customize
their embedding model if desired.

4.2.2 Diagnostic information summary. LLMs have
shown potential for automatic summarization [34]. Nonethe-
less, the length of the diagnostic information collected from
RCACopilot handlers is often too extensive. As shown in
Figure 6, the diagnostic information of an incident can have
more than 2000 tokens with low readability of the log mes-
sages. The considerable number of tokens in the incident
description can pose challenges for the LLM to effectively
process and may introduce noise. Therefore, feeding the di-
agnostic information of an incident directly into the LLM
to make a prediction could not be an ideal choice, let alone
using the information from multiple sources. In this regard,
we add another layer to leverage the LLM’s ability to summa-
rization to summarize the diagnostic information first before
making the diagnosis reasoning. We construct the prompt in
the way of Figure 7. We ask LLM to summarize the diagnos-
tic information into 120-140 words without outputting any
unrelated information. This summarization process makes
the diagnostic information more concise and informative,
which forms the basis for the later CoT prompting. Figure 8
illustrates a more readable and concise text generated by

8

Dr
aft

Empowering Practical Root Cause Analysis by
Large Language Models for Cloud Incidents 2023, ACM, arXiv

RCACopilot, which is a summary (113 tokens) of the previ-
ous diagnostic information example in Figure 6, highlighting
the key details such as the number of UDP ports used and
the process utilizing the most. Specifically, we employ the
tiktoken [35] tokenizer to count text tokens.

“Please summarize the above input. Please note that the
above input is incident diagnostic information. The sum-
mary results should be about 120 words, no more than
140 words, and should cover important information as
much as possible. Just return the summary without any
additional output.”

Figure 7. Prompt to summarize diagnostic information.

“The DatacenterHubOutboundProxyProbe has failed
twice on the backend machine, with both failures due
to a WinSock error 11001 indicating that the host is un-
known. This error was encountered while attempting
to connect to the host. The error is associated with the
EOP service and has not been notified yet. The failure
context suggests the same issue. The total UDP socket
count is 15276, with themajority being used by the
Transport.exe process. The issue seems to be related to
the SMTP connection and requires further investigation.”

Figure 8. The summarized diagnostic information.

4.2.3 Nearest neighbor search. Incidents are heteroge-
neous, making it impractical to combine all past incidents’
information for sampling due to the prompt length limita-
tions, even after summarization. To selectively choose past
cases as samples in the prompt, we design a new similarity
formula:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏) = | |𝑎 − 𝑏 | |2

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑏) = 1
1 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏) ∗ 𝑒

−𝛼 |𝑇 (𝑎)−𝑇 (𝑏) |

to calculate the similarity between two incidents. It first
computes the Euclidean distance for every pair of incident
vectors. Importantly, it also takes into account the tempo-
ral distance between incidents, reflecting our Insight-2 in
Section 3. Here, 𝑇 (𝑥) stands for the date of incident 𝑥 . This
consideration of temporal distance is crucial as it influences
the relevance of past incidents to the current ones. After cal-
culating similarities, we select the top 𝐾 incidents as demon-
strations for the LLM. This approach ensures a diverse and
representative set of incidents for effective LLM reasoning.
The values of 𝛼 and 𝐾 have been determined as 0.3 and 5, re-
spectively, through empirical evaluation, as will be presented
in Section 5.4.

4.2.4 Prediction prompt construction. CoT prompting
is a gradient-free technique that guides LLMs to produce
intermediate reasoning steps leading to the final answer. In
few-shot CoT prompting, several demonstrations include a
question and a reasoning chain that directs the answer. With-
out hinging on the hand-crafting of demonstrations, Auto-
CoT [50] has shown the power of automatically constructing
the prompt to form the reasoning chains. By drawing inspira-
tion from this concept, we can view the summarized diagnos-
tic information and the labeled root cause categories as ques-
tions and reasoning, so finding the nearest incident neighbor
is the automatic reasoning chain construction, aligning with
the CoT prompting context well. We construct the prompt
like Figure 9 to ask the LLM to choose the most likely inci-
dent that has the same root cause as the current incident,
and also we explicitly push the LLM to reason by using “give
your explanation” indications in the prompt.

Context: The following description shows the error
log information of an incident. Please select the
incident information that is most likely to have the
same root cause and give your explanation (just
give one answer). If not, please select the first item
“Unseen incident”.
Input: The DatacenterHubOutboundProxyProbe
probe result from [BackEndMachine] is a failure ...
Options:

A: Unseen incident.
B: The DatacenterHubOutboundProxyProbe has

failed twice ... category: HubPortExhaustion.
C: There are 62 managed threads in process

TransportDelivery ... category: AuthCertIssue.

Figure 9. The prompt to predict incident category.

4.3 Implementation

We have developed and deployed RCACopilot using a com-
bined total of 58,286 lines of code, consisting of 56,129 lines
of C# and 2,157 lines of Python.
To facilitate the building of the RCACopilot incident

handler, we have implemented RCACopilot’s handler con-
struction as a web application. To support a new type of alert
in RCACopilot, OCEs only need to add a new handler in
the handler construction GUI according to her expertise (see
Appendix A). After the new handler has been constructed,
it will be stored in the database, and OCEs can modify it by
creating new action nodes or deleting old nodes.

5 Evaluation

We aim to answer the following questions in our evaluation:
(1) How effective and efficient is RCACopilot as an on-call

system when predicting root cause categories and as-
sisting OCEs? RCACopilot achieves 0.766 and 0.533 for

9

Dr
aft

2023, ACM, arXiv Yinfang et.al.

Micro-F1 and Macro-F1 separately when predicting the
root cause category of cloud incidents, outperforming
all our baselines with a low running overhead (4.205 sec-
onds). RCACopilot is also able to generate new root
cause category labels for unseen incidents with explana-
tions.

(2) How do different components of RCACopilot facilitate
its diagnosis and prediction? RCACopilot has proven
that the diagnostic information collection component,
GPT summarization, and chain-of-thoughts prompting
all contribute to RCACopilot’s prediction effectiveness.

(3) Is RCACopilot suitable for deployment in real produc-
tion services, and are RCACopilot’s results trustworthy?
RCACopilot’s diagnostic information collection mod-
ule has been deployed across 30 teams within Microsoft
for over four years. To evaluate the trustworthiness of
RCACopilot, each experiment was conducted over three
rounds, and RCACopilot can consistently achieve a high
Micro-F1 score of over 0.70 and a Macro-F1 score exceed-
ing 0.50.

All experiments are performed on the server with Intel(R)
Core(TM) i7-9700 CPU @ 3.00GHz, 32.0 GB physical mem-
ory, and Intel UHD Graphics 630. The OS of the server is
Windows 11 Enterprise.

5.1 Target System and Dataset

We evaluate RCACopilot in a global email service system
named Transport within the Microsoft. The Transport team
focuses on developing and maintaining the components re-
sponsible for mail flow, routing, and delivery. This system
interacts with various other services to ensure seamless inte-
gration with a multitude of products and services, including
serviceA, serviceB, and serviceC. Hence, it is representative
of complex, real-world systems that interact with multiple
components. With around 150 billion messages being deliv-
ered daily, Transport operates at a colossal scale and caters
to customers worldwide, adding another layer of diversity
and complexity. The system ensures the secure and effec-
tive transmission of emails between users, utilizing various
protocols such as SMTP, IMAP, and POP3. Given its crucial
role in communications infrastructure, it is essential to have
effective and efficient incident management capabilities.
We collect a one-year dataset of 653 incidents from Mi-

crosoft’s Transport service to investigate RCACopilot’s ef-
ficacy in practice. It is important to note that each of these
incidents represents complex issues in a large-scale, globally
distributed system, and thus each provides valuable insights.
The dataset is manually labeled with root cause categories
by experienced OCEs, which serves as our ground truth. We
divide the incident cases into training (75%) and testing sets
(25%).

We conduct experiments on two large language models
in RCACopilot, i.e., GPT-3.5-turbo, and GPT-4 (8K tokens),

which are the latest models from OpenAI. We choose GPT-4
as the default model in RCACopilot because it has the best
performance.

5.2 Compared Approaches

We have selected XGBoost, FastText, and fine-tuned LLMs as
our baselines to compare with RCACopilot. We have also
made another two variants, i.e., GPT-4 Prompt and Embed.
to evaluate the design of RCACopilot.
• XGBoost provides a parallel tree boosting that has been
commonly used in the networking system diagnosis.

• FastText is a popular lightweight textual embedding ap-
proach, which has been adopted in testbed studies with
fault injections for root cause diagnosis tasks.

• Fine-tuneGPT is to fine-tune a pre-trainedGPT-3.5model
with our training dataset and evaluate its performance on
our testing dataset with the temperature parameter set to 0.
Note that GPT-4 is currently not available for fine-tuning.

• GPT-4 Prompt is a variant of RCACopilot that directly
predict category with RCACopilot’s diagnosis informa-
tion summaries.

• GPT-4 Embed. is a variant of RCACopilot that changes
the embedding model from FastText to GPT embedding.

Method F1-score Avg. Time (s)

Micro Macro Train. Infer.

FastText [45] 0.076 0.004 10.592 0.524
XGBoost [3] 0.022 0.009 11.581 1.211
Fine-tune GPT [1] 0.103 0.144 3192 4.262

GPT-4 Prompt 0.026 0.004 – 3.251
GPT-4 Embed. 0.257 0.122 1925 3.522

RCACopilot (GPT-3.5) 0.761 0.505 10.562 4.221
RCACopilot (GPT-4) 0.766 0.533 10.562 4.205

Table 2. Effectiveness of different methods.

5.3 Effectiveness and Efficiency

We evaluate RCACopilot’s effectiveness by predicting the
root cause category of an incident based on the summa-
rized diagnostic information using micro and macro F1-score
metrics. These metrics calculate the harmonic mean of the
precision and recall. The micro F1-score aggregates the per-
formance of all classes, taking into account the contribution
of each sample, while the macro F1-score focuses on the
performance of each individual class. RCACopilot achieves
a micro F1-score of 0.766 and a macro F1-score of 0.533 on
our testing dataset.

As shown in Table 2, RCACopilot outperforms other ap-
proaches, and it tends to incur an acceptable higher runtime
overhead. The performance of baseline approaches is poor,

10

Dr
aft

Empowering Practical Root Cause Analysis by
Large Language Models for Cloud Incidents 2023, ACM, arXiv

since multiple root cause categories exhibit a long tail (im-
balanced) distribution, as shown in Figure 3, and traditional
machine learning models (FastText and XGBoost) and fine-
tuning GPT model need a large amount of training data
to produce accurate predictions. Directly employing GPT-4
prompt or GPT-4 embedding approach without our design
lacks domain-specific knowledge for GPT-4 to make deci-
sions. On the contrary, RCACopilot leverages the powerful
LLM to learn the domain-specific knowledge from minimal
cases, so that it can achieve the best performance. Results
indicate that RCACopilot not only provides higher accuracy
but also maintains a reasonable level of efficiency, making it
a suitable choice for incident root cause analysis.
When facing incidents that RCACopilot has never seen

before, RCACopilot is capable of generating a new category
keyword to depict the new incident case. For example, Inci-
dent 8 in Table 1 is a new incident case that RCACopilot
has never encountered. RCACopilot’s prediction compo-
nent is able to predict it as a new category “I/O Bottleneck”.
Although OCEs subsequently categorize it as “DiskFull” in
post-investigation, the fundamental aspects of the problem
identified by RCACopilot align closely with the human-
derived label. The corresponding RCACopilot’s explanation,
illustrating how it arrived at the "I/O Bottleneck" categoriza-
tion, is provided in Figure 10.

The prediction of “I/O Bottleneck” was made based on
the occurrence of System.IO.IOExceptions within cru-
cial functions handling input/output operations, suggest-
ing an issue with data processing. The nested exception
within the DiagnosticsLog module reinforces this notion.
These errors, combined with crashes on different backend
machines, point to a system struggle with handling data
flow.

Figure 10. RCACopilot’s explanation of an incident.

0.0 0.2 0.4 0.6 0.8
alpha

0.60

0.64

0.68

0.72

0.76

F1
_m

ic
ro

K=3
K=5
K=9
K=12
K=15

(a) F1 micro.

0.0 0.2 0.4 0.6 0.8
alpha

0.30

0.36

0.42

0.48

0.54

F1
_m

ac
ro

K=3
K=5
K=9
K=12
K=15

(b) F1 macro.

Figure 11. Effectiveness of using different K and alpha.

Data Source F1-score

AlertInfo DiagnosticInfo ActionOutput Micro Macro

✓ 0.689 0.510
✓sum.

0.766 0.533

✓ 0.379 0.245
✓ ✓ 0.525 0.511
✓ ✓ 0.431 0.247

✓ ✓ 0.501 0.449
✓ ✓ ✓ 0.440 0.349

Table 3. Effectiveness of different prompt context for
RCACopilot. ✓sum. stands for the summarized diagnostic

information.

5.4 Comparison Analysis

To understand how different components of RCACopilot
facilitate root cause analysis, we conduct an ablation study
on the different RCACopilot’s components.
Evaluation on diagnostic information. First, we eval-

uate the impact of diagnostic information on effectiveness.
In particular, we compare diagnostic information collected
from the collection stagewith other different incident-related
information, namely, incident alert information and RCA-
Copilot handler action output. AlertInfo includes the alert
type and alert scope. Alert type is a pre-defined anomaly
description from a monitor, which only reflects a symptom
of the incident instead of the root cause, e.g., an exception
type from external monitors. The alert scope is the scope
of the incident, e.g., a single machine. ActionOutput is the
output of a series of executed RCACopilot actions, which
are hashed as key-value pairs. As shown in Table 3, using
diagnostic information alone can outperform others in both
Micro-F1 (0.689) and Macro-F1 scores (0.510). The interesting
observation here is that mixing the diagnostic information
with others will not enhance RCACopilot’s predictive capa-
bilities. This demonstrates that an excess of information can
negatively impact the LLM’s prediction performance.
Evaluation on GPT summarization.We evaluate the

role of GPT summarization in enhancing RCACopilot’s ef-
fectiveness. As depicted in Table 3, utilizing summarized
diagnostic information leads to the highest Micro-F1 and
Macro-F1 scores, marking improvements of 0.077 and 0.023,
respectively, over the non-summarized diagnostic informa-
tion. The results demonstrate that the summarization step
effectively condenses the information, allowing for more
efficient and accurate processing of incident data.
Evaluation on few-shots CoT reasoning. We assess

how few-shots CoT reasoning contributes to improving effec-
tiveness. GPT-4 Prompt approach in Table 2, which directly
predicts the category without any sample, only achieves
0.026 and 0.004 for Micro-F1 and Macro-F1 respectively. As

11

Dr
aft

2023, ACM, arXiv Yinfang et.al.

shown in Figure 11a and Figure 11b, we compare the perfor-
mance of RCACopilot with different numbers of samples in
the Chain-of-thoughts reasoning. Our analysis reveals that
the best combination of the number of samples and alpha
values are 5 and 0.3, which achieves the highest F1 scores.
Note that more samples in the CoT reasoning do not always
incur an improvement for RCACopilot, and the value of
the alpha plays an important role in deciding the effective-
ness. When the alpha is appropriate, it allows RCACopilot
to better capture the time relationships between different
incidents, leading to more accurate predictions.

5.5 Deployment Status and Scale

We have successfully deployed RCACopilot’s diagnostic in-
formation collection module across over 30 teams within
Microsoft, where it has been in active use for over four
years. The system is tailored to each team’s specific require-
ments, with custom handlers built for each unique setting.
Not all handlers are currently enabled in the production en-
vironment, as some are still under development and rigorous
testing. We observe that the average running time for each
incident ranges from 15 seconds to 841 seconds (see Appen-
dix A). The highest running time is attributable to the team’s
large-scale and complex system infrastructure. As part of our
commitment to continuous improvement and quality user
experience, we have incorporated a feedback mechanism in
emails to garner user perspectives from OCEs. According
to our collected feedback, most OCEs expressed satisfaction
with the diagnostic information provided by RCACopilot.

5.6 Tustworthiness

While GPT has shown great potential and impressive results
in various tasks, it is known to exhibit some instability in
certain complex tasks such as question answering, as noted
by Tan et al. [37]. These instabilities could potentially lead to
variable results. In order to ensure the trustworthiness and
stability of the GPT’s predictive capabilities in RCACopilot,
each experiment has been conducted three rounds. In each
round, RCACopilot was able to maintain a high level of
performance, with the Micro-F1 consistently above 0.70 and
the Macro-F1 remaining above 0.50.

6 Discussion

RCACopilot’s effectiveness depends on the ability of the
LLM. Currently, RCACopilot is only integrated with Ope-
nAI’s GPT models, and we have not yet explored the po-
tential effectiveness of other available LLMs. As such, the
model’s performance may vary depending on the strengths
and weaknesses of the specific LLM employed.
We conducted our evaluation of RCACopilot’s predic-

tion module using the incident dataset from Transport. The
dataset was prepared with the assistance of experts in Trans-
port team, given their extensive experience and established

practice of incident labeling. Note that the effectiveness of
RCACopilot is also influenced by the quality of the root
cause categories. Currently, all root cause categories are
manually labeled by our experienced OCEs. RCACopilot’s
diagnosis information collection has been deployed in over
30 teams. Consequently, a valuable future work would be
to evaluate RCACopilot across different services to gain a
more comprehensive understanding of its generalizability
and adaptability.
RCACopilot’s handler is designed to respond based on

alerts generated by monitors. This implies that for incidents
that the monitor does not detect, RCACopilot will not be
able to match a handler, thereby limiting its applicability.
We conducted three rounds of experiments to evaluate

RCACopilot’s effectiveness. However, the occasional in-
stability of LLMs can influence their effectiveness, causing
variations across different rounds. Another potential threat
to internal validity lies in the implementation of our ap-
proach and those we compared against. To mitigate this risk,
two authors have carefully checked the code. In particular,
we implemented the baselines based on the matured frame-
works.

7 Related Work

Root cause analysis. Root cause analysis in large cloud ser-
vices has become a popular topic of research in the system
and software engineering communities [2, 7, 14, 15, 19, 24,
27, 30, 40, 49]. It aims to identify the root causes of failures
and performance issues based on various data sources, such
as metrics, logs, and traces. Previous studies have proposed
different approaches for root cause analysis using one of
these data sources. For example, some methods rely on met-
rics to extract failure patterns [30, 48] or to construct service
dependency graphs [20, 29]. Others use logs to analyze a sub-
set of log messages [1, 47] or to examine the details within
each log message [22, 46]. Moreover, some techniques utilize
trace to locate the faulty service [21, 23, 39, 43]. Different
from prior work, we build a system that can automatically
integrate metrics, logs, and traces for root cause analysis
with state-of-the-art large language models.
Large Language Models. In recent years, the rise of LLM
has brought new opportunities to the field of software sys-
tems by enabling various tasks such as code generation,
summarization, repair, testing, and root cause analysis [1, 13,
33, 34, 44]. For example, Mastropaolo et al. [34] studied the
ability of fine-tuned T5 in the following tasks: automatic bug
fixing, generation of assert statements, code summarization,
and injection of code mutants. LANCE [33] uses fine-tuned
T5 to automatically generate logging statements for Java
methods. VulRepair [13] also fine-tune T5 on vulnerability
repairs datasets to automatically propose vulnerability fixes.
Zhang et al. [44] proposes to use prompting for LLM to im-
prove code version control. Ahmed et al. [1] fine-tune GPT-x

12

Dr
aft

Empowering Practical Root Cause Analysis by
Large Language Models for Cloud Incidents 2023, ACM, arXiv

models to recommend root causes and mitigation steps to
facilitate cloud incident management. In contrast to previous
studies, RCACopilot employs advanced LLMs to summarize
diagnosis data and leverage the chain-of-thoughts ability to
predict and explain root causes.

8 Conclusion

RCACopilot represents a pioneering tool in the realm of
cloud incident management, facilitating efficient root cause
analysis for OCEs. It introduces a unique approach to multi-
source data collection through its diagnostic information col-
lection stage, utilizing predefined incident handlers. These
handlers, constructed by OCEs, systematically gather multi-
source diagnostic information, which sets the foundation
for the subsequent analysis. Furthermore, RCACopilot in-
tegrates a large language model in its root cause prediction
stage. This model autonomously processes the collected di-
agnostic data, predicting and explaining the root cause cate-
gory. This integration of AI techniques into cloud incident
management demonstrates the potential of RCACopilot in
enhancing the efficiency and accuracy of root cause analysis.

References

[1] Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmer-
mann, Xuchao Zhang, and Saravan Rajmohan. 2023. Recommending
Root-Cause and Mitigation Steps for Cloud Incidents using Large
Language Models. arXiv preprint arXiv:2301.03797 (2023).

[2] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer
Al-Kiswany. 2018. An analysis of network-partitioning failures in
cloud systems. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 51–68.

[3] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff
Outhred. 2016. Taking the blame game out of data centers operations
with netpoirot. In Proceedings of the 2016 ACM SIGCOMM Conference.
440–453.

[4] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier
Midy, and Mathru Janakiraman. 2020. Decaf: Diagnosing and triaging
performance issues in large-scale cloud services. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering:
Software Engineering in Practice. 201–210.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing systems 33 (2020),
1877–1901.

[6] Ilias Chalkidis. 2023. ChatGPT may Pass the Bar Exam soon, but has a
LongWay toGo for the LexGLUE benchmark. arXiv:2304.12202 [cs.CL]

[7] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng Qin. 2019.
Understanding exception-related bugs in large-scale cloud systems. In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 339–351.

[8] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan
Hao, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang.
2019. An empirical investigation of incident triage for online service
systems. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 111–
120.

[9] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao,
Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019.
Continuous incident triage for large-scale online service systems. In

2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 364–375.

[10] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang,
Dan Hao, Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, et al.
2020. How incidental are the incidents? characterizing and prioritiz-
ing incidents for large-scale online service systems. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering. 373–384.

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021).

[12] Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang, and Tianyin Xu.
2023. Push-Button Reliability Testing for Cloud-Backed Applications
with Rainmaker. In Proceedings of the 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’23).

[13] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and
Dinh Phung. 2022. VulRepair: a T5-based automated software vulner-
ability repair. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. 935–947.

[14] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun
Wei, Ruirui Huang, Li Zhou, and Yongming Wu. 2018. An empirical
study on crash recovery bugs in large-scale distributed systems. In
Proceedings of the 2018 26th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering. 539–550.

[15] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and Suman Nath. 2022.
How to fight production incidents? an empirical study on a large-
scale cloud service. In Proceedings of the 13th Symposium on Cloud
Computing. 126–141.

[16] Muhammad Adil Inam, Yinfang Chen, Akul Goyal, Jason Liu, Jaron
Mink, Noor Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan.
2022. SoK: History is a Vast Early Warning System: Auditing the
Provenance of System Intrusions. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 307–325.

[17] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang,
Hongyu Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020.
How to mitigate the incident? an effective troubleshooting guide rec-
ommendation technique for online service systems. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering.
1410–1420.

[18] Jungo Kasai, Yuhei Kasai, Keisuke Sakaguchi, Yutaro Yamada, and
Dragomir Radev. 2023. Evaluating GPT-4 and ChatGPT on Japanese
Medical Licensing Examinations. arXiv:2303.18027 [cs.CL]

[19] Tanakorn Leesatapornwongsa, Cesar A Stuardo, Riza O Suminto, Huan
Ke, Jeffrey F Lukman, and Haryadi S Gunawi. 2017. Scalability bugs:
When 100-node testing is not enough. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems. 24–29.

[20] Mingjie Li, Minghua Ma, Xiaohui Nie, Kanglin Yin, Li Cao, Xidao Wen,
Zhiyun Yuan, Duogang Wu, Guoying Li, Wei Liu, et al. 2022. Min-
ing Fluctuation Propagation Graph Among Time Series with Active
Learning. In Database and Expert Systems Applications: 33rd Interna-
tional Conference, DEXA 2022, Vienna, Austria, August 22–24, 2022,
Proceedings, Part I. Springer, 220–233.

[21] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei
Zhang, Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, et al. 2021.
Practical root cause localization for microservice systems via trace
analysis. In 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS). IEEE, 1–10.

[22] Zhenhao Li, Chuan Luo, Tse-Hsun Chen, Weiyi Shang, Shilin He,
Qingwei Lin, and Dongmei Zhang. 2023. Did We Miss Something
Important? Studying and Exploring Variable-Aware Log Abstraction.

13

https://arxiv.org/abs/2304.12202
https://arxiv.org/abs/2303.18027

Dr
aft

2023, ACM, arXiv Yinfang et.al.

arXiv preprint arXiv:2304.11391 (2023).
[23] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang

Gong, Ziang Li, Jiayu Ou, and Zheshun Wu. 2021. Microhecl: High-
efficient root cause localization in large-scale microservice systems. In
2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 338–347.

[24] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. 2019.
What bugs cause production cloud incidents?. In Proceedings of the
Workshop on Hot Topics in Operating Systems. 155–162.

[25] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang,
Yong Xu, Minghua Ma, Qingwei Lin, Yingnong Dang, et al. 2022. Uni-
Parser: A Unified Log Parser for Heterogeneous Log Data. In Proceed-
ings of the ACM Web Conference 2022. 1893–1901.

[26] Chang Lou, CongChen, PengHuang, YingnongDang, Si Qin, Xinsheng
Yang, Xukun Li, Qingwei Lin, and Murali Chintalapati. 2022. RESIN:
A Holistic Service for Dealing with Memory Leaks in Production
Cloud Infrastructure. In Proceedings of the 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’22). USENIX
Association, Carlsbad, CA, USA, 109–125. https://www.usenix.org/
conference/osdi22/presentation/lou-resin

[27] Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding, De-
tecting and Localizing Partial Failures in Large System Software.. In
NSDI, Vol. 20. 559–574.

[28] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei
Zhang, and ZheWang. 2014. Correlating events with time series for in-
cident diagnosis. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 1583–1592.

[29] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang,
and Ping Wang. 2020. Automap: Diagnose your microservice-based
web applications automatically. In Proceedings of The Web Conference
2020. 246–258.

[30] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher
Zheng, Xinhao Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu,
et al. 2020. Diagnosing root causes of intermittent slow queries in
cloud databases. Proceedings of the VLDB Endowment 13, 8 (2020),
1176–1189.

[31] Minghua Ma, Shenglin Zhang, Junjie Chen, Jim Xu, Haozhe Li,
Yongliang Lin, Xiaohui Nie, Bo Zhou, Yong Wang, and Dan Pei. 2021.
Jump-Starting Multivariate Time Series Anomaly Detection for Online
Service Systems. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). 413–426.

[32] Minghua Ma, Shenglin Zhang, Dan Pei, Xin Huang, and Hongwei
Dai. 2018. Robust and rapid adaption for concept drift in software
system anomaly detection. In 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 13–24.

[33] Antonio Mastropaolo, Luca Pascarella, and Gabriele Bavota. 2022. Us-
ing Deep Learning to Generate Complete Log Statements. In Proceed-
ings of the 44th International Conference on Software Engineering (ICSE
’22). 2279–2290.

[34] AntonioMastropaolo, Simone Scalabrino, Nathan Cooper, David Nader
Palacio, Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021.
Studying the usage of text-to-text transfer transformer to support
code-related tasks. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 336–347.

[35] OpenAI. 2023. Tiktoken: A Python library for tokenizing text. https:
//github.com/openai/tiktoken. Available from: https://github.com/
openai/tiktoken.

[36] Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula, Arjun Rad-
hakrishna, and Anurag Gupta. 2022. AutoTSG: learning and synthesis
for incident troubleshooting. In Proceedings of the 30th ACM Joint

European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. 1477–1488.

[37] Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu, Yongrui Chen, and
Guilin Qi. 2023. Evaluation of ChatGPT as a Question Answering Sys-
tem for Answering Complex Questions. arXiv preprint arXiv:2303.07992
(2023).

[38] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi,
Quoc Le, and Denny Zhou. 2022. Chain of thought prompting elicits
reasoning in large language models. arXiv preprint arXiv:2201.11903
(2022).

[39] Zhe Xie, Haowen Xu, Wenxiao Chen, Wanxue Li, Huai Jiang, Liangfei
Su, Hanzhang Wang, and Dan Pei. 2023. Unsupervised Anomaly
Detection on Microservice Traces through Graph VAE. In Proceedings
of the ACM Web Conference 2023. 2874–2884.

[40] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay Jain, and Michael Stumm. 2014. Simple Testing
Can Prevent Most Critical Failures: An Analysis of Production Failures
in Distributed Data-Intensive Systems.. In OSDI, Vol. 10. 2685048–
2685068.

[41] Jun Zeng, Zheng Leong Chua, Yinfang Chen, Kaihang Ji, Zhenkai
Liang, and Jian Mao. 2021. WATSON: Abstracting Behaviors from
Audit Logs via Aggregation of Contextual Semantics.. In NDSS.

[42] Jun Zeng, Xiang Wang, Jiahao Liu, Yinfang Chen, Zhenkai Liang,
Tat-Seng Chua, and Zheng Leong Chua. 2022. Shadewatcher:
Recommendation-guided cyber threat analysis using system audit
records. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
489–506.

[43] Zhengran Zeng, Yuqun Zhang, Yong Xu, Minghua Ma, Bo Qiao, Wen-
tao Zou, Qingjun Chen, Meng Zhang, Xu Zhang, Hongyu Zhang, Xue-
dong Gao, Hao Fan, Saravan Rajmohan, Qingwei Lin, and Dongmei
Zhang. 2023. TraceArk: Towards Actionable Performance Anomaly
Alerting for Online Service Systems. In To appear in Proc. of ICSE.

[44] Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and
Shuvendu K Lahiri. 2022. Using pre-trained language models to resolve
textual and semantic merge conflicts (experience paper). In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis. 77–88.

[45] Shenglin Zhang, Pengxiang Jin, Zihan Lin, Yongqian Sun, Bicheng
Zhang, Sibo Xia, Zhengdan Li, Zhenyu Zhong, Minghua Ma, Wa Jin,
et al. 2023. Robust Failure Diagnosis of Microservice System through
Multimodal Data. arXiv preprint arXiv:2302.10512 (2023).

[46] Tianzhu Zhang, Han Qiu, Gabriele Castellano, Myriana Rifai,
Chung Shue Chen, and Fabio Pianese. 2023. System Log Parsing: A
Survey. IEEE Transactions on Knowledge and Data Engineering (2023).

[47] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu Zhang,
Xukun Li, Yingnong Dang, Qingwei Lin, et al. 2021. Onion: identifying
incident-indicating logs for cloud systems. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1253–1263.

[48] Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili Xu, Hengbo
Liu, Qingsong Wen, Liang Sun, Junwei Jiang, Lunting Fan, and Min Ke.
2021. CloudRCA: a root cause analysis framework for cloud computing
platforms. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 4373–4382.

[49] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues,
Shan Lu, and Ding Yuan. 2021. Understanding and detecting software
upgrade failures in distributed systems. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 116–131.

[50] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2023. Auto-
matic Chain of Thought Prompting in Large Language Models. In The
Eleventh International Conference on Learning Representations (ICLR
2023).

14

https://www.usenix.org/conference/osdi22/presentation/lou-resin
https://www.usenix.org/conference/osdi22/presentation/lou-resin
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken

Dr
aft

Empowering Practical Root Cause Analysis by
Large Language Models for Cloud Incidents 2023, ACM, arXiv

A Appendix

Figure 12.Web-based UI of RCACopilot for handler
construction.

To facilitate the building of the RCACopilot incident
handler, we have implemented RCACopilot’s handler con-
struction as a web application, as shown in Figure 12.

We have successfully deployed RCACopilot’s diagnos-
tic information collection module across 30 teams within
CompanyX. From these, we’ve selected the top 10 teams
that utilize the most RCACopilot incident handlers. Table 4
provides details about the average execution time and the
count of active handlers for these selected teams.

Team Avg. exec. Enabled
time(s) handler

Team1 841 213
Team2 378 204
Team3 106 88
Team4 449 42
Team5 136 41
Team6 91 34
Team7 449 32
Team8 255 32
Team9 323 31
Team10 22 18

Table 4. Teams using RCACopilot to automatically collect
diagnostic information.

15

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Incident Root Cause Analysis
	2.2 The Opportunities and Challenges of Multi-Source Data in Incident Management
	2.3 The Promise of Large Language Models for Incident Management
	2.4 Our Motivation

	3 Insights from Incidents
	4 RCACopilot
	4.1 Diagnostic Information Collection Stage
	4.2 LLMs for Incident Explanation
	4.3 Implementation

	5 Evaluation
	5.1 Target System and Dataset
	5.2 Compared Approaches
	5.3 Effectiveness and Efficiency
	5.4 Comparison Analysis
	5.5 Deployment Status and Scale
	5.6 Tustworthiness

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Appendix

