FlowMatrix: GPU-Assisted Information-Flow
Analysis through Matrix-Based Representation

Kaihang Ji, Jun Zeng, Yuancheng Jiang, Zhenkai Liang,
Zheng Leong Chua, Prateek Saxena, Abhik Roychoudhury

USENIX Security Symposium, August 2022

NUS

National University
of Singapore

B &

95

Dynamic Information Flow Tracking (DIFT)

* DIFT (aka Dynamic Taint Analysis): An important program analysis
technique in security

* Track information flows in a program: Taint state transforms between
sources and sinks of interest

 Security applications: Vulnerability analysis, Configuration diagnosis, etc.

&) /etc/passwd

Source

{naxLength-1, fp)) {
“)_
xmsg, strlen(msg), 0);

Sink

162.66.239.75

/

Data Leakage Example

Dynamic Information Flow Tracking (DIFT)

* Challenge: Users often need to check multiple information flows
* Calls for efficient DIFT Query: Rapidly DIFT with different given sources and sinks

* DIFT is expensive: 4~8 times performance overhead

* One way to support DIFT query: Heavy computing support (OSDI’16)
* Another way is to speed up DIFT itself...

2 oo

Malicious Input

&

Jopt/secret [—="

/etc/passwd -/ }

o |W He(fgets(msg;

r);

strcat(msg=2n");

send(

axLength-1, fp)) {

strlen(msg), 0);

Sink

162.66.239.75

/

Source

Data Leakage Example

Problem of DIFT

* Existing work of accelerating DIFT

- Program Execution

Instrumentation

Taint Propagation

Normal Execution Traditional DIFT

-]
Decoupling Fast Path Hot Path
Decoupled Analysis Partial Instrumentation Popular Path Summary
(CCS’13,Security’15) (Micro’06,RAID’19) (PLDI'10)

* Lack of speeding up propagation operation itself.

Complexity of DIFT Operation Rules

* Taint propagation logics in current DIFT mechanisms are
* Implemented in high-level programming languages with if and loops
* Unnecessarily complex
e Challenging to be computationally speeded-up

veid taint_parallel_compute(shad, weid r2r_binary_eopl(dst, sre, ...) int gen_taintcheck_imsn(...) {
dest, opcode, ...) i switch(opc) {
{ thread_ctx ->vepu.gpr [dst] |= case INDEX_op_or_132:
if (ocpceode == llvm::Instructicn:: thread_ctz->vepu.gprlsrcl; Ff» t0 = argl || argd =f
Or) { by tcg_gen_or_132 (t0,argl,arg2);
cb_mask_ocut.cbkb_mask = volid ins_dinspect (INE ins) { F# £2 = (0 1= 0) w
(cb_mask_1.zero_mask & o=oso tcg_gen_movi_132(t_zeroc ,0);
cb_mask_2.cb_mask) | switch (ins_dimndx) { tcg_gen_setcond_i32(TCG_COND_NE
(cb_mask_2.zero_mask & case XED_ICLASS_OR: L£2.t_zare , t0};
cbhb_mask_1.cb_mask); INS_InsertCall(f* result = =-t2 ® /
1 r2r_binary_opl, tcg_gen_neg_ i32 (result ,t2);
write_cb_masks (shad, dest, REG3Z_INDX (reg_dst), break;
cb_mask_out, ...J; REG32_INDX (reg_src), ...); e
Bt } }
} 1 1
(a) Panda (b) Libdft (c) Decaf

Different implementations of taint propagation rule of or instruction in Panda, libdft and DECAF.

Insights

* DIFT propagation logic is data dependency (Taintinduce NDSS’19)
* Example: DIFT operations for x86 instructions
eaxyyr = 1 * eax;, + 1 * edx;,

[@ } Input State
ebx,ye = 1% ebx;,
[}Output State :;izzz z 1 : 22’;’;

DIFT operations for instruction Dependencies in Boolean space
OR eax, edx

eax,,: = 1 * eax;, + 0 * ebx;, + 0 * ecx;, + 1 * edx;,
ebx,yr = 0 *x eax;, + 1 xebx;, + 0 * ecx;, + 0 * edx;,
ecxXoyt = 0 * eax;, + 0 xebx;, + 1 *ecx;, + 0 * edx;y,
edx,,: = 0*eax;, +0*ebx;,, + 0 xecx;, + 1 * edx;,

Dependencies in a verbose form

Insights

eaxoy:r = 1 * eax;, + 0 x ebx;, + 0 *ecx;, +1 * edx;,

Insights

We identify the linearity in DIFT:

 The DIFT operation between input states and output states is a

linear relationship.

-
A system of linear equations:
L f:Sin =2 Sout

reaxout = 1*eax;, +0*ebx;, +0 xecx;,, +1* edx;,
ebx,e = 0 * eax;, +1*ebx;, +0*ecx;, + 0 * edx;,
eCXpyr = 0% eax;,, + 0 xebx;, +1*ecx,, +0xedx;,
\EdXoue = 0 x eax;, + 0 xebx;, + 0+ ecxyy +1 x edxyy,

DIFT Operations as Matrix Transformations

FlowMatrix: a new matrix-based representation of DIFT propagation rule

(eaxout =1x*eax;, + 0=*ebx;, + 0 xecx;, +1* edxi,)

ebxyyr = 0 * eax;, + 1 * ebx;, + 0 * ecx;, + 0 * edx;y,
ecxoyr = 0 x eax;, + 0 *ebx;, +1*ecxy, + 0 * edx;,
\edxout = 0=*eax;, +0=*ebx;, +0*ecx;, +1* edxi,y

}

(eAXoyt ?1 0 0 1])/¢%in h
ebxoue | 0 1 0 O] ebxin
ecxoue | O 0 1 0} ecXin
L edx,yt &0 0 . 0 11)\edx;, y
\ 4

The coefficient matrix, the dependencies between S;,, and S, ¢

Propagation Summary as Matrix Multiplication

 Example: DIFT propagation of two x86 instructions

 Summarizing two DIFT propagation rules is to multiply two FlowMatrices:
Msum = Mz X My

* FlowMatrix operations: matrix-matrix multiplication, etc.

S Y ——
.| ELTE
B8 e) !

\ / Summarized Matrix

GPU-assisted DIFT Operations

* GPUs are suitable for highly parallel applications such as matrix and
vector computations.

* FlowMatrix operations are accelerated by GPUs!

Speed of calculation (FLOPS) and data movement (GB/s) - #EmeringTech #MegaTrend

Peak-Double-Precision-Flops{GFLOPs) Peak Memory Bandwidth (GB/s)
6000 800
+GPU <GPU
5000 wecpu Zzz -CPU
4000 500
3000 400
2000 300
200
100 100 .,-0—"“—"—"’-'4
0 0
2006 2008 2010 2012 2014 2016 2018 2006 2008 2010 2012 2014 2016 2018

Source: HPC 2016.

source europa.eu via @mikequindazzi

GPU-assisted FlowMatrix-based DIFT Query

* How can GPUs and FlowMatrix support efficient DIFT queries?
* Answer a query by propagating each instruction sequentially? ® Query too slow

* Prepare queries by pre-computing every possible query? ® Too much to
prepare

* Goal: Reasonable pre-processing cost and rapid query response

f —

Malicious Input

?
[etc/passwd -

whi

path, uru)’,
axLength-1, fp)) {
strcat(msg—A\n");
send(socket, msg, strlen(msg), 0);
~_

162.66.239.75

-

Source

DIFT Query Motivating Example

Sink

Trace-based Repeated DIFT Query

e Offline DIFT query on instruction execution traces

* (Segment-tree-like) Query Tree
* Leaf nodes: FlowMatrix for a single instruction
* Non-leaf nodes: Summarized FlowMatrices of two child nodes

* Pre-processing (Tree Construction): Linear time complexity
* Query: Logarithmic time complexity

~
DIFT Query

10

Under/Over-tracking in DIFT queries

* Improper tracking policy may lead under/over-tracking
e E.g., Common under-tracking cases: dependencies between pointers and
values, between condition and in-branch variables
* How to mutate tracking policy with FlowMatrix?
* Directly patch DIFT rule matrix
* Add a temporary variable to bridge information flows

' N\
\) JNE <branch1> { @)
Voo T braneht: o

~N

\) MOV eax, ebx :@:
f 0 0 11 [0 0 0
(i -1 ¢ TR

Rule Patching Temporary Variable Bridging .

Evaluation

e Evaluation Aspects

e Performance
* How much improvement is achieved by GPU assistance?
* How fast is FlowMatrix-based DIFT query?
* Throughput
 What is the throughput of FlowMatrix-based DIFT queries?
* Comparison
 How does FlowMatrix-based DIFT query compare with existing taint
tools and DIFT query systems?
* Date Set
15 CVEs and 7 common applications

12

Evaluation - Performance

e Question: How much improvement achieved by GPU assistance?

* Answer:
e Qur prototype outperforms CPU-based DIFT tool over 5 times in
performance on average.

Performance Speed-up
10

o N A OO
%
Y
I
%~

13

Evaluation - Performance

e (Question: How fast is FlowMatrix-based DIFT query?

* Answer:
* Most DIFT query requests can be answered in less than 0.5 sec.

Query Response Time (millisecond)
1000

100
10 I I
1
\°+ . &

14

Evaluation - Throughput

* Question: What is the throughput of the DIFT query operations?

* Answer:
* QOver 5,000,000 dataflows per second on average

FlowMatrix-based Query Throughput (flow/s)

9,000,000
8,000,000

7,000,000
6,000,000
5,000,000
4,000,000
3,000,000
2,000,000
1,000,000
& ©

Evaluation - Comparison

e Question: Is FlowMatrix comparable to existing taint engines and DIFT query
systems?
* Answer:
* Three orders of magnitude larger than LibDFT
 Comparable with JetStream (achieved by 128 CPU cores)

Throughput Outperforming Libdft (magnification)

100000
10000
1000
100
N hinnl
1
& Q@ 6(7}‘\ Q¥ Q”S\\ N &Qb N ¥ & \o$,b’b(’ 0&' N
N S & FTE Y LT W E S
< & & ®<<‘Q’ ® W)

16

Summary

* FlowMatrix: a Matrix-based DIFT Representation
* We recognize linearity of dynamic information flow operations
* We propose a matrix-based representation for DIFT operations

e GPU-assisted DIFT

* FlowMatrix enables GPU as co-processors for efficient DIFT
operations

* DIFT Query
* We design an efficient DIFT query with high throughput

AVAILABLE

Thanks!
Q&A

kaihang@comp.nus.edu.sg

Code Available at https://github.com/mimicji/FlowMatrix

18

