
FLOWMATRIX: GPU-Assisted Information-Flow Analysis
through Matrix-Based Representation

Kaihang Ji†, Jun Zeng†, Yuancheng Jiang†, Zhenkai Liang†,
Zheng Leong Chua‡, Prateek Saxena†, Abhik Roychoudhury†

†National University of Singapore ‡Independent Researcher

Abstract
Dynamic Information Flow Tracking (DIFT) forms the foun-
dation of a wide range of security and privacy analysis. The
main challenges faced by DIFT techniques are performance
and scalability. Due to the large number of states in a pro-
gram, the number of data flows can be prohibitively large and
efficiently performing interactive data flow analysis queries
using existing approaches is challenging. In this paper, we
identify that DIFT under dependency-based information flow
rules can be cast as linear transformations over taint states.
This enables a novel matrix-based representation, which we
call FLOWMATRIX, to represent DIFT operations concisely
and makes it practical to adopt GPUs as co-processors for
DIFT analysis. FLOWMATRIX provides efficient support for
interactive DIFT query operations. We design a DIFT query
system and prototype it on commodity GPUs. Our evaluation
shows that our prototype outperforms CPU-based baseline by
5.6 times and enables rapid response to DIFT queries. It has
two to three orders of magnitude higher throughput compared
to typical DIFT analysis solutions. We also demonstrate the
efficiency and efficacy of new DIFT query operations.

1 Introduction

Understanding information flows in program execution is the
basis for advanced system diagnosis and attack response. Dy-
namic Information Flow Tracking (DIFT) is a commonly used
solution that tracks data flows in programs, which identifies
the flow of data among program states. It has a wide range
of applications, such as vulnerability detection and attack in-
vestigation [1–19], data leakage detection [20–24], protocol
recovery [25], and system configuration diagnosis [26, 27].

In a real-world program with a large number of states, the
data flows in the program are prohibitively complex to be
reasoned about. As a result, DIFT analysis is typically applied
to a subset of data flows: selecting a few program states and
tracking how they affect other program states along with the
data flows in the program, e.g., taint analysis [1]. During DIFT

analysis, investigators often need to run a large amount of
DIFT checks. For example, analysts commonly encounter
programs that prevent information flows from being tracked
correctly [28], such as in an implicit information flow where
variables are affected by other variables indirectly. When
reasoning about such information flows, there is a need to
probe information flows with multiple queries. As another
example, in misconfiguration diagnosis, investigators need to
check multiple information flows in a server program, taking
different configuration files to identify the root cause and
ramifications of misconfiguration [26, 27]. Such query-style
DIFT analysis is even more challenging, which requires heavy
computational support [29].

There have been many efforts to improve the performance
and scalability of DIFT techniques. From a high-level view,
information flow analysis systems include two main tasks,
defining information flow rules for individual operations and
applying the rules on a set of operations. An active research
direction for improving DIFT efficiency focuses on reducing
and parallelizing the application of rules on the operation
set. One category of work decouples flow tracking from pro-
gram execution and offloads the tracking in parallel to one or
more CPU cores [30–36] or other host systems [29, 37, 38].
Another category of work improves DIFT performance by
limiting flow tracking under certain conditions. For example,
several solutions [3, 39, 40] perform fastpath which enables
applications to execute without any instrumentation or taint
propagation for those execution paths without involving any
tainted metadata. Optimizing DIFT operations can also speed
up analysis when DIFT tools summarize the semantics of a
chunk of programs [21, 41] or eliminate redundant tracking
logic code in hot paths [42].

Another research direction to improve DIFT operations
focuses on optimizing the information flow tracking rules. In
fact, the fundamental limitation of DIFT is caused by such
rules. Specifically, most of the existing solutions in taint anal-
ysis follow information flows defined by program semantics,
where the complexity of the rules makes it difficult to scale up.
Recent research has developed new representations of DIFT

operations for several different purposes, including speeding
up taint analysis [41] or automatically generating rules for
information flow tracking [43,44]. We aim to explore whether
these new representations can enable faster DIFT analysis.
Our Insight. The data flow captures how variables in the
input space (source) of a program affect program variables
in the output space (sink). Recent research shows that they
can be represented as a dependency relationship or a gradi-
ent one [43, 44]. We observe that the dependency relation is
simpler in semantics when describing information-flow op-
erations. In fact, it forms a linear relation in a program trace,
as we will elaborate in Section 3. The linear relationship
can be represented as matrix operations. As a well-studied
mathematical structure, matrix operations are optimized for
in software libraries as well as in hardware implementations,
such as GPUs. The matrix representation and hardware sup-
port lead to optimized execution of interactive DIFT queries
in an after-the-fact style on a program trace.
Our Approach. We design FLOWMATRIX, a novel matrix-
based representation of information flow operations that en-
ables efficient and versatile DIFT analysis. DIFT operations
using FLOWMATRIX can be efficiently processed by GPUs,
which are specialized hardware designed to perform large-
scale linear operations in parallel. The efficiency in data flow
operation representation and the speed-up by GPU enables ef-
ficient interactive DIFT queries. We also design a FLOWMA-
TRIX-based query system to support repeated DIFT queries.

We evaluate FLOWMATRIX for efficiency and effectiveness
improvements. Using GPU as the co-processor, we showed
that it can achieve 5.6 times speed-up compared with CPU
DIFT baseline. Our system also performs DIFT queries in
less than 0.1s for common cases and in less than 2s for heavier
real-world applications on commodity hardware. Moreover,
we compare our tool with the state-of-the-art and commonly
used DIFT analysis and query tools, namely LibDFT [45]
and JetStream [29]. Our approach outperforms LibDFT by
three orders of magnitude in data flow tracking throughput,
and achieves comparable throughput to JetStream without
using a server cluster. Finally, our case studies illustrate how
our DIFT query can help to improve trace-based after-the-
fact analysis, including handling implicit control flows and
diagnosing server misconfigurations.

We summarize the contributions of this work:

• We analyze offline dynamic information flow operations
on binaries and identify its linearity property. We pro-
pose FLOWMATRIX, a novel way of representing DIFT
operations using matrices which enabling off-the-shelf
GPUs to be used as a hardware co-processor for DIFT.

• We design an efficient solution to support interactive
DIFT queries on offline execution traces. It also supports
fine-tuning implicit flows and indirect flows efficiently.
Our prototype demonstrates sub-second response time
for several DIFT queries in common DIFT workloads.

2 Background

We briefly introduce existing DIFT techniques and analyze
their limitations.

2.1 Dynamic Information Flow Analysis

Dynamic information flow tracking (DIFT) identifies the flow
of data between two program locations. In taint analysis, it
is often referred to as (taint) sources and (taint) sinks. For
example, taint sources can be external inputs (e.g., network
sockets, file reads, and user inputs), while taint sinks can be
program outputs, sensitive memory areas, the program counter
(PC), etc.

In order to track the flow of data in binary programs, the
semantics of instructions need to be followed. Taking taint
analysis as an example, for each instruction executed by the
program, the metadata of the source operand is propagated
to the destination operand based on the instruction seman-
tics. The propagation step is then repeated for all instructions
executed. At any point in time, the current state of the data
can be obtained by observing the recorded metadata. In DIFT
queries, the data flow of instructions is also needed for decid-
ing the existence of queried flow. Tracking the data flow forms
the main bulk of work performed by DIFT analysis. It is deter-
mined by a set of rules, which are generated manually [45–47]
by domain experts or automatically by inference [43].

2.2 Limitations of Existing DIFT Rules

The DIFT rule representation directly decides the complexity
of DIFT operations. We analyze the resulting limitations of
existing DIFT rules.

The data-flow rules of state-of-the-art DIFT mechanisms
are typically implemented in high-level programming lan-
guages. A detailed example of such implementation of differ-
ent DIFT tools is provided in Figure 10 in Appendix. Due to
the richness of semantics of the language describing the taint
rules, it is challenging to further summarize the complex prop-
agation logic, which is often Turing complete. While works
like Taint Flow Algebra [41] simplify the expression of taint
rules as algebraic expressions, the summary of such expres-
sions relies on term rewriting, which still requires non-trivial
effort and is an open research problem.

The standard approach employed by current DIFT engines
starts with an initial (taint) state and repeatedly applies a
taint propagation function to it, accumulating in the final
taint state specified by the analyst. Note that the result of any
intermediate taint state is dependent on the previous state,
and this dependency between the current and previous result
forces the entire process to be sequential. The sequential [35]
nature of the propagation process essentially prevents it from
being parallelized.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#****

ICCV
#****

ICCV 2019 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

LATEX Template for ICCV Proceedings

Anonymous ICCV submission

Paper ID ****

Abstract

• al[0]← al[0], al[1]← al[1], ..., al[7]← al[7]

• al[0]← bl[0], al[1]← bl[1], ..., al[7]← bl[7]

• bl[0] ← bl[0], bl[1]← bl[1], ..., bl[7]← bl[7]

1. Related Work

2. Methodology

3. Experiments

4. Conclusion

References

1

Figure 1: Dependency-based taint propagation rule for or
al, bl.

Under such sequential constraints, it is difficult to propagate
two instructions in parallel, because in each propagation, the
output taint state has a dependency on the current taint state,
which is the output of the last propagation.

3 FLOWMATRIX Approach

In this section, we analyze the core properties of DIFT opera-
tions and introduce a matrix-based representation. We show
how it enables efficient DIFT operations and GPU-based pro-
cessing in information flow analysis.

3.1 Matrix Representation of Information
Flow Operations

We formally describe the terms related to data-flow tracking
on dynamic execution traces. Let τ : ⟨I1, · · · , IN⟩ be the exe-
cution trace of a program, which is an ordered sequence of
instructions, from I1 to IN . Let Si : {0,1}n be a column vector,
which is the taint state of the instruction Ii, represented as
a bit vector of size n. Let Fi : {0,1}n → {0,1}n denote the
DIFT rule for instruction Ii, modeled as a function that maps
Si to Si+1. Let Sα denote the taint source and Sω denote the
taint sink where 1≤ α < ω≤N+1. DIFT operations analyze
whether there are data flows between Sα and Sω.

Our Insight. In the instruction or al, bl, it ORs the low-
est eight bits in ebx register with the lowest eight bits in eax
register and stores the result in the lowest eight bits in eax.
Its taint rule can be written in a dependency-based representa-
tion [43], shown in Figure 1. The left side of the arrow denotes
the states in the destination of the instruction’s operation, i.e.,
uses, while the right side denotes the states in the source of
the instruction, i.e., defs. For simplicity, we have omitted the
influence to the status register in the illustration.

In this instruction, the first input bit of al and bl influences
the first output bit of al. The corresponding DIFT propagation
rule can be written as:

alout [1] := alin[1]∨blin[1].

which is actually a simplification of the more verbose form in
boolean algebra:

alout [1] = (1∗alin[1])+ · · ·+(0∗alin[8])
+(1∗blin[1])+ · · ·+(0∗blin[8]).

In the verbose form, we explicitly include all input and output
taint bits of the instruction. The coefficient for each of the
input bits determines if the particular bit has an effect on the
output taint bit. We can represent the taint state of the instruc-
tion as a bit vector, S : {0,1}n. Let w j,i : {0,1} represent the
influence of Sin[i] over Sout [j], the rule can be generalized as:

Si+1[j] = w j,1 ∗Si[1]+w j,2 ∗Si[2]+ · · ·+w j,n ∗Si[n].

Therefore, the propagation function F : {0,1}n→{0,1}n, is
a system of n such equations:

Si+1[1] = w1,1 ∗Si[1]+w1,2 ∗Si[2]+ · · ·+w1,n ∗Si[n],

Si+1[2] = w2,1 ∗Si[1]+w2,2 ∗Si[2]+ · · ·+w2,n ∗Si[n],
...

Si+1[n] = wn,1 ∗Si[1]+wn,2,∗Si[2]+ · · ·+wn,n ∗Si[n].

As a result, the taint rule of an instruction Ii can be represented
as an n×n matrix:

Mi =

w11 w12 · · · w1n
w21 w22 · · · w2n

...
...

. . .
...

wn1 wn2 · · · wnn

 .

We call this representation FLOWMATRIX. Using the
FLOWMATRIX representation, the propagation function F
is defined as:

Fi : Mi×Si

With the definition of the propagation function F , we rep-
resent information flow propagation from source to sink as a
sequence of function applications.

Sω = Fω−1(· · ·Fα+2(Fα+1(Fα(Sα)))).

As matrix multiplication is a composition of linear systems,
the FLOWMATRIX representation enables an efficient sum-
mary of information flows. If Ma,Mb are two FLOWMATRIX
data flow matrices, their summarized data flow matrix Mab
can be calculated by multiplying two matrices:

Mab = Mb×Ma.

Thus, for the instructions sequence < Iα, · · · , Iω−1 >, we
can summarize their data flows as:

Msummary = Mω−1×·· ·×Mα+2×Mα+1×Mα.

This enables the pre-computation of the propagation rule
for instructions beforehand with Msummary.

Sω = (Mω−1×·· ·(Mα+2× (Mα+1× (Mα×Sα))))

= (Mω−1×·· ·Mα+2×Mα+1×Mα)×Sα

= Msummary×Sα.

3.2 GPU-assisted FLOWMATRIX Operations
Matrix is a well-studied structure in parallel processing. As
DIFT operations can be represented as matrix operations, it
opens up an opportunity to scale up DIFT operations using
hardware and algorithms developed for efficient matrix oper-
ations. For example, though originally designed for graphics
processing, GPU is increasingly used as a modified form of
stream processor (or a vector processor). The thousands of
cores make the GPU a very promising choice for highly par-
allel applications like matrix and vector calculations.

To process the DIFT operation matrix in GPU, we need to
represent the rule matrix R in a format accepted by GPU. Most
modern languages (including C/C++ and CUDA) store 2D
arrays/matrices as 1D arrays in a row-major layout. However,
such a matrix layout incurs a heavy space overhead and has a
cubic time complexity in matrix-matrix multiplication tasks.
Given that a program state may contain millions of bits, both
shortcomings hinder the direct application of this dense layout
in DIFT with such an enormous matrix size.

To address this challenge, we make use of an observation
that most rule matrices are extremely sparse – one bit has
data flows towards only a few bits. For example, the matrix
for an x86-64 instruction mov rax, [rbp-8] has 128 bit-
wise data flows: 64 flows from memory [rbp-8] to register
rax and 64 succeeding flows from memory [rbp-8] to it-
self. As the matrix size is 128× 128, its sparsity would be
99.2%. In light of the high sparsity, we store FLOWMATRIX as
sparse matrices [48], where only those non-zero elements are
stored, by their indices and values. Thus, the space complex-
ity for sparse matrix storage is linear to a matrix’s number of
non-zeros (NNZ). The performance of sparse general matrix-
matrix multiplication (SpGEMM) is much better than dense
matrix-matrix multiplication with a high sparsity [49]. In ad-
dition, the matrices need to be normalized to fit the context of
each other before multiplication. We provide further details
in Appendix A.2.

4 FLOWMATRIX-Based DIFT Query

In this section, we present our solution to enable offline effi-
cient DIFT queries with FLOWMATRIX.

4.1 Overview
Figure 2 shows the design of our FLOWMATRIX-based DIFT
query system. Given a program execution trace, it provides
users with an interactive command-line interface to query
information flows repeatedly from various sources to destina-
tions. Sources and destinations each are either (1) a collection
of positions in the trace, or (2) a collection of system calls
where our tool hooks their data flows automatically, or (3) a
collection of instructions that involve specified registers or
memory contents as their operands.

Query Tree Constructor

d Multithreading construction

Flow Database

GPU Management

read(…)

e Rule Summarization

Query and Augment

g Flow Augment

fi Flow Query

C
om

m
and Line Prom

pt

jnz <main+0x76>
mov rax, 42

Traces

Database

System
Call Handlers

c Trace Loading

h Rule Edition

Figure 2: FLOWMATRIX Query architecture overview.

The FLOWMATRIX-based DIFT query system first loads
the trace to a database for scalable processing (Step 1). It then
prepares for queries by building a query tree (Step 2). The
query tree constructor invokes the back-end GPU manage-
ment component for FLOWMATRIX summarization, where
the instructions in the database are converted into FLOWMA-
TRIX data flow matrices (Step 3). Once summarization is
done, the query tree is ready for incoming DIFT queries in
Step 4 and replies with information flow dependencies. Users
are able to obtain arbitrary direct data flow dependencies.

If some of the dependencies are not explicitly tracked by di-
rect data flows, which is a challenging scenario for traditional
DIFT analysis [28], FLOWMATRIX DIFT query supports effi-
cient information flow augment for such two common cases:
indirect data flows and implicit control flows. We show that
the data flow represented by FLOWMATRIX can be augmented
(Step 5), which is further discussed in Section 4.3. Our tool
internally calls the GPU management unit to perform FLOW-
MATRIX editing on GPUs (Step 6). Finally, the augmented
flows are ready for user query (Step 7).

4.2 Query Tree Construction
The problem of finding data flow using FLOWMATRIX can
be formulated as follows: Given a sequence of data flow ma-
trices M1, M2, . . . , MN , and two positions α and ω, find data
flows between position α and position ω as matrix products
Mα ·Mα+1 · . . . ·Mω. After DIFT operations are abstracted as
matrix operations, optimization can be done by leveraging
the mathematical structure of matrix. Matrix operations are
associative, i.e., (A×B)×C = A× (B×C), which allows the
out-of-order computation of matrix multiplication. As a result,
instead of performing a sequence of N matrix multiplications,
we can compute the matrix product in a pairwise manner,
which requires log(N) operations. This enables us to paral-
lelize the process of matrix multiplication, and thus increase
overall throughput.

We use a binary-tree data structure to coordinate the range
data flow queries over a trace, borrowing the idea of a segment

Figure 3: A query tree of 15 leaf vertices handles a query from
3 to 13. The tree splits the query into sub-queries to search
for pre-computed data flows of segments. Those recursive
sub-queries are presented as red edges marked with sub-query
ranges. Dark vertices are chosen ones in this query to be
multiplied.

tree. A query tree is a full binary tree, where each vertex other
than leaves has exactly two child vertices. Each vertex stores
a data flow matrix of a sub-segment. For instance, the root
vertex stores the data flow from the beginning to the end of the
whole segment [1,N], and its children represent two halves
[1,N/2] and [N/2+1,N] respectively. We keep splitting all
segments into two halves until all of them reach size 1. In
Figure 3, we show an example of such a binary-tree built
based on a snippet with 15 instructions. Every non-leaf vertex
has been marked with a segment it represents: the summary
of two child vertices.

Tree construction is the pre-computation process before
queries. We take the execution trace as input and compute
the data flow stored in every on-tree vertex. As each non-
leaf vertex relies on the data flows from both children, we
adopt a recursion algorithm to build the tree from bottom
to top. More specifically, as function QueryTreeConstruct
shown in Algorithm 1, we start assigning tasks from the full
segment, [1,N]. Every time we divide the current segment
into two halves (if it has not yet become a segment of length
1), and then call the same procedure on both halves. When
a segment’s size reaches 1, then it is a leaf and represents
a data flow of a single instruction. The data flow matrix of
one instruction is directly loaded from the data flow cache
or database. Then, the parent vertex summarizes data flow
matrices from two children, and uses the product matrix as
the data flow matrix stored in the parent. Similarly, data flow
matrices of other non-leaf vertices are computed after their
children are both ready. Once the root is ready, the procedure
of the whole query tree construction is completed.

Figure 3 also illustrates an example where the data flow
between interval [3,13] is queried from a trace of length 15.
Our solution procedure starts from the root [1,15]: The query
interval is a subset of the segment of the root. Thus, we move

Algorithm 1: FLOWMATRIX Tree Construction
// trace - An execution trace of a program
// α,ω - Indices in trace, where α≤ ω

// v - A vertex in the binary query tree
// root - Root vertex in the binary query tree
// Return with summarized matrices replied from

children.
1 function BuildSubTree(trace, v, α, ω)
2 v.segment← [α...ω];
3 if α = ω then

// v is a leaf vertex
4 v.M← ruleCache.loadMatByIdx(trace,α);
5 else

// v is a non-leaf vertex
6 v.lChild← φ;
7 v.rChild← φ;
8 BuildSubTree(trace,v.lChild,α,v.mid);
9 BuildSubTree(trace,v.rChild,v.mid +1,ω);

10 v.M← matrixBuilder.Summarize(v.lChild.M,v.rChild.M);
11 end
12 return v
13 end
14 function QueryTreeConstruct(trace)
15 root← φ;
16 root← BuildSubTree(trace,root,1, trace.length());
17 return root
18 end
19 function GetSubFlow(v, α, ω)
20 if v.segment ⊂ [α...ω] then

// In range. Return this vertex’s matrix.
21 return v.M
22 end
23 if v.segment ∩ [α...ω] = φ then

// Fully outside. Return an identity matrix.
24 return I
25 end

// Overlapping! Ask children recursively.
26 le f tSum← GetSubFlow(v.lChild,α,ω);
27 rightSum← GetSubFlow(v.rChild,α,ω);

// Return with summarized matrices replied from
children.

28 return matrixBuilder.Summarize(le f tSum,rightSum)

29 end
30 function GetIntervalFlow(root, α, ω)

// Get data flow matrix for segment [α..ω].
31 return GetSubFlow(root,α,ω)
32 end

to child vertices and split the interval into [3,8] and [9,13]
logically. We repeat these steps until we meet a vertex whose
segment is a subset of the query interval, e.g., [3,4]. Then the
data flow matrix for [3,4] will be returned. Finally, to obtain
the result of the query, we just summarize those returned
matrices, which are M3→4, M5→8, M9→12 and M13→13 in our
example.

Note that at any level, one query will have at most two
overlaps intervals, the most left interval and the most right
interval. Only those overlaps would cause calls to the next
level on the tree. Otherwise, the function call will directly
return with the vertex’s data flow matrix or an identity matrix.
In other words, Query function at most visits four vertices on
one level; among those four, at least two of them will directly
return without diving into their subtrees. Given that a query
tree is a balanced binary tree and that its height is ⌈log2N⌉
following O(logN), the number of total vertices we have to
visit in a query is O(logN). Note that only when there is an
overlapping, the data flow summarization will be performed.

Thus, a query would only operate data flow summarization
for O(logN) times.

4.3 FLOWMATRIX Extension for Implicit
Flows and Indirect Flows

Tracking of implicit and indirect data flows, of which two
common examples are memory address references and con-
ditional control flows [28], has always been a challenge in
DIFT. These non-explicit data flows are usually defined in
a taint propagation policy [50]. The challenge arises due to
the severe over-tainting (taint explosion) that resulted from
propagating all non-explicit data flows. Typical solutions use
propagation policies based on heuristics, such as one-level
table lookups [51] to control the conditions of implicit taint
propagation, or specifically handled strict control flow de-
pendence [52]. For existing DIFT solutions, the problem is
exacerbated by the fact that taint propagation policies have to
be determined before DIFT is performed and any changes to
the policies necessitate a rerun of the DIFT making iterative
fine tuning of the policy hard. This highlights two desirable
properties we would like to achieve: a unified way of reason-
ing and defining non-explicit data flow and a cheap way to
perform changes to taint propagation policies.

Implicit and indirect data flows typically imply an indirect
influence. Specifically, implicit flows happen when the con-
dition variable in a conditional branch implicitly affects the
data that is defined in the branch; indirect flows exist because
a memory address indirectly affects the data at the memory
location. Intuitively, we can use a variable φ to make these im-
plicit/indirect relations explicit. The taint propagation policy
then can be defined as a set of φ where enabling the tracking
of an implicit data flow can be achieved by incorporating φ in
the taint propagation.

FLOWMATRIX enables this to be done in a unified and low-
cost manner. Assigning an additional variable is an 1-row-
column extension operation on FLOWMATRIX: the column
vector represents the source of influence for φ and the row
vector denotes what is being influenced. After modification
of one or several data flow matrices, our query tree design
allows minimum vertex updates. Only ancestors of modified
vertices are no longer carrying the up-to-date data flows. Thus,
a query tree update is to re-compute a chain of ancestors of a
modified vertex.

Specifically, implicit flow and indirect flow are handled
as follows: An implicit flow is represented by defining the
dependency from the condition variable to φ and from φ to
any variables being defined by in-branch instructions; An
indirect flow is represented by defining the dependency from
a memory address to φ and φ to the memory content.

Examples in X86 We provide an X86 example of the im-
plicit control flow in Figure 4(a). In this case, there is an
implicit control flow between register rdi and register rax: rdi

test rdi, rdi ;ZF <- rdi
je <baz+0x1a> ;jmp if ZF
...
mov rax, 0x1 ;in-branch (0) init

(a) Control-flow dependency example (b) Information flow augment

ZF
rip

𝝓
𝑴𝒃𝒆𝒇𝒐𝒓𝒆 𝑴𝒂𝒇𝒕𝒆𝒓

(c) Augment for je instruction

+
𝑴𝒂𝒖𝒈

= rax
𝝓

𝑴𝒃𝒆𝒇𝒐𝒓𝒆 𝑴𝒂𝒇𝒕𝒆𝒓

(d) Augment for mov instruction

𝑴𝒂𝒖𝒈

+ =

(1) test (2) je (3) mov

rdi
rax
ZF
𝝓

Figure 4: Example for implicit flow augment. Vsnap is the
extended virtual variable for data flow snapshot. All matrices
have been simplified for easy presentation.
lea rsi,QWORD PTR[rdi+rcx]

mov rdx,QWORD PTR[rsi]

call rdx

rsi
rdx

[rsi]
𝑴𝒃𝒆𝒇𝒐𝒓𝒆 𝑴𝒂𝒖𝒈 𝑴𝒂𝒇𝒕𝒆𝒓

(a) Example in memory reference (b) Augment for mov instruction

+ =

Figure 5: Example for indirect flow augment. All matrices
have been simplified for easy presentation.

contains data from external inputs and controls a conditional
jump which leads to a data move instruction, assigning reg-
ister rax with a constant. The condition variable here is the
Zero Flag (ZF) set by the test instruction; the control flow
influences rax implicitly. As a result, we assign an implicit
flow variable, and set data flows from ZF to the variable and
from the variable to rax.

Another X86 example is provided for the memory address
reference in Figure 5(a). There is an implicit flow between
register rcx and the target of an indirect call through a memory
reference. The memory address variable in the move instruc-
tion is equivalent to rsi; the def variable here is register rdx.
Since all of these are performed in a single instruction, we
can optimize it by directly adding data flows from rsi to rdx
explicitly in this move instruction.

Figure 4(c) and Figure 4(d) illustrates the matrix edition
operations in FLOWMATRIX for the control-dependency case
shown in Figure 4(a). As for those cases where no variable is
assigned explicitly, matrices are directly modified by adding
the originally-missed influences to them. Figure 5(b) illus-
trates the matrix operation for such optimized scenarios.

5 Implementation

We have prototyped FLOWMATRIX utilities and query frame-
work1. To provide a friendly interface, we also provide users
the ability to raise influence queries and view results through
an interactive command line prompt. In this section, we intro-
duce important technical details during our implementation.

1Source code is available at https://github.com/mimicji/
FlowMatrix.

https://github.com/mimicji/FlowMatrix
https://github.com/mimicji/FlowMatrix

Choice of GPU Programming Framework. FLOWMA-
TRIX needs to be represented in sparse matrix format. There
are many libraries available for GPU-based sparse matrix
supports, including TensorFlow [53], PyTorch [54], and CuS-
parse [55]. TensorFlow is an end-to-end open-source platform
for machine learning but also provides APIs for direct tensor
operations. However, it currently does not support SpGEMM,
which is crucial for FLOWMATRIX. PyTorch is also a platform
mainly designed for machine learning. With extension pack-
age [56], PyTorch is able to support SpGEMM operations.
However, due to the high-performance overhead from Python,
and lack of flexibility to customize GPU management, we
decide to provide PyTorch-based Python bindings for query
only. For better performance, we implement our prototype
based on CuSparse library from the NVIDIA CUDA toolkit.
This provides us an opportunity to pursue better performance
but requires us to manage GPUs by ourselves.

Multi-threading and Database Management. Due to
GPUs’ powerful ability in parallel computing, a single thread
usually can not fully utilize all GPUs’ computing power in
the task of query tree construction. Fortunately, we observe
that different sub-trees of a FLOWMATRIX query tree do not
depend on each other. Thus, it enables multiple threads to
work on several sub-trees in parallel. Specifically, the ances-
tor vertices of sub-trees that are not yet computed can be later
summarized by one process within negligible time after all
workers finish their jobs.

After a thorough analysis of the performance profile of a
worker, we discover that most of the time had been spent on
database loading and storing and data transferring between
CPU and GPU. We notice that in a sub-tree construction, a
worker always loads data flow rules from the database se-
quentially as it performs a DFS-like algorithm. Inspired by
this, our tool deploys a read cache which reads a sequence of
instruction data flows from the database at one time. Also, a
write buffer is adopted for inserting summarized data flows
into the database within one transaction.

GPU Scheduling. Without scheduling, even summarizing
two FLOWMATRIX data flows is performed into fully depen-
dent stages, where each stage never starts until its previous
stage finishes. For example, we first load the matrix from the
database, transfer it to GPU memory, and then do the same
thing to the second one. Such a pipeline is unnecessary as
these two matrices do not have dependencies. In this way,
GPU resources are also not well-scheduled among threads, as
all threads may be transferring data at the same time while
GPU cores are idle.

To address this issue, we use CUDA streams, which allow
programs to overlap computation and data transfer operations
inside or across threads to maximize the utilization of GPU
cores. In our previous case, two matrices can be transferred
to GPU memory asynchronously. As for multiple threads, the

GPU cores work in a pipeline manner: once a computation
task of one thread is done, cores automatically move on to the
next task from another thread.

Data Flow Rules. Data flow rules taken by FLOWMATRIX
are automatically generated by TaintInduce [43], which infers
taint rules from observations of CPU states. Not all generated
rules can be directly transformed into a matrix representation.
In particular, for those branch instructions and conditional
move instructions, TaintInduce provides different taint rules
corresponding to different branches. When FLOWMATRIX
summarizes data flows into matrices, it requires a unique rule
for a particular instruction. Thus, in execution traces, besides
instruction sequences, we also record necessary branch con-
dition information stored in registers (e.g., eflags register)
and pick the corresponding rule during the data-flow summa-
rization.

Extensible APIs. We aim to expose most of the tool’s op-
tions through a command line prompt, and we also support
power users who may need more flexibility than what pro-
vided commands can offer. Our tool provides direct access
to its functionality and allows users to customize their own
commands. To use these utilities, users would write command
handler functions in C++ and register them to the command
prompt. Inside the functions, users can invoke our tool’s API
to acquire specified information flows, inspect its content,
modify it and write back to the database at will.

6 Evaluation

In this section, we present the evaluation of the following
aspects of FLOWMATRIX.

• The performance of FLOWMATRIX-based DIFT query
operations, as well as the improvement achieved by GPU
assistance;

• The throughput of the DIFT query enabled by FLOW-
MATRIX works on real-world programs compared with
traditional dynamic taint analysis;

• The performance bottleneck and space overhead of
FLOWMATRIX-based DIFT query;

• The benefit of FLOWMATRIX demonstrated via case
studies.

6.1 Experiment Setup
We conduct all experiments on a server with an Intel E5-
2620 v4 CPU processor, two NVIDIA Tesla V100 GPUs and
256GB physical memory. The OS is Ubuntu 20.04 LTS. The
CPU processor is equipped with eight 2.10GHZ cores, 16
hyper threads, and 20MB L3 cache.

We use 15 common programs of which vulnerabilities are
listed in Table 1 as our security task dataset. Our program

Table 1: Summary of tested software vulnerabilities. #Instr.
is the number of instructions from taint sources towards taint
sinks of ground-truth in every CVE execution trace.

ID Program Vulnerability #Instr. CVE ID
1 Nginx Stack Overflow 146,971 CVE-2013-2028
2 Sndfile-deinterleave Stack Overflow 40,443 CVE-2018-19432
3 Readelf Heap Overflow 259,332 CVE-2019-9077
4 Sndfile-convert Out-of-bound Read 21,424 CVE-2017-14245
5 Thumbnail Out-of-bounds Write 11,181,696 CVE-2014-8128
6 Eu-ranlib Divide by Zero 32,935 CVE-2018-18521
7 Size Stack Overflow 6,030 CVE-2014-9939
8 Thttpd Information Leakage 17,873 CVE-2009-4491
9 Libsolv Illegal Address Access 173,606 CVE-2018-20534

10 Mime-parse Null Pointer Dereference 3,907 CVE-2017-8825
11 Objdump Null Pointer Dereference 315,580 CVE-2017-17123
12 Cflow Use-after-Free 5,070,298 CVE-2020-23856
13 Mp42aac Null Pointer Dereference 146,371 CVE-2020-23912
14 Pngout Integer Overflow 4,266 CVE-2020-29384
15 Nm-new Heap Overflow 221,458 CVE-2021-20284

selection follows criteria: (1) covering common categories of
vulnerability, namely Stack Overflow, Heap Overflow, Out-of-
bound Read & Write, Divide by Zero, Information Leakage,
and Null Pointer Dereference; (2) selecting vulnerable pro-
grams with publicly available proof-of-concept exploits. Their
vulnerabilities are triggered by exploits we found from links
on NVD [57] and recorded with a simple DynamoRIO [58]
instruction tracer we implemented. Our modular design al-
lows users to replace this tracer with any other one as long
as it provides instruction traces, memory access addresses,
eflags register at data flow branches (e.g., cmov instructions)
and system call traces. A C++ API with a pre-defined struc-
ture has been provided for users to convert other traces to our
format.

Moreover, we also prepare an additional experiment dataset
of seven real-world applications to generally evaluate FLOW-
MATRIX DIFT query performance:

• tar - archive a text file and untar,
• gzip - compress a text file and decompress,
• bzip - compress a text file and decompress,
• scp - send a text file to remote server,
• ngnix - serve static content,
• mongoDB - insert, select, delete a database entry,
• ghostscript - browse an academic paper.

The first four utilities represent three different types of pro-
grams on system: tar is I/O bounded; gzip and bzip are
CPU intensive; and scp is a mixed case. They are popu-
larly used as an evaluation for some existing DIFT accel-
eration work [35,36,59]. Applications gzip, nginx, mongoDB,
ghostscript are server and desktop tasks which are used in
JetStream [29], for performance evaluation. We report the
mean value of five trials in our experiments.

6.2 Performance of DIFT Query
We use 15 CVEs listed in Table 1 and seven general tasks to
quantify the efficiency and the throughput of FLOWMATRIX
DIFT query. We build query trees on top of the range from
ground-truth source to sink for each trace to compare with

Table 2: Performance of FLOWMATRIX DIFT query and
construction, compared with the performance of the CPU
baseline for each trace. FM-Sum is the summarization time
during query tree construction in seconds. FM-Query is the
query response time in seconds. CPU-Base is the propagation
time for the CPU-based baseline DIFT tool in seconds.

ID Program FM-Sum FM-Query CPU-Base
1 Nginx 5.22 0.034 27.57
2 Sndfile-deinterleave 0.93 0.016 6.86
3 Readelf 8.98 0.097 40.21
4 Sndfile-convert 0.49 0.057 3.08
5 Thumbnail 401.39 0.751 1686.26
6 Eu-ranlib 0.61 0.007 4.55
7 Size 0.15 0.001 0.81
8 Thttpd 0.57 0.009 5.18
9 Libsolv 8.31 0.105 68.05

10 Mime-parse 0.09 0.001 0.55
11 Objdump 13.2 0.133 52.78
12 Cflow 187.1 0.469 720.11
13 Mp42aac 7.84 0.266 19.18
14 Pngout 0.10 0.002 0.71
15 Nm-new 9.29 0.115 34.19

Table 3: Performance of FLOWMATRIX DIFT query and
summarization, compared with Libdft. Tracing is the run
time of our tracer in seconds. FM-DFs is the number of data
flows carried by FLOWMATRIX during query tree construc-
tion. FM-TP is the throughput of data flows per second in
FLOWMATRIX query tree construction. Libdft-Taint is the
run time of Libdft in seconds. Libdft-DFs is the number of
data flows tracked by Libdft. Libdft-TP is the throughput of
tracked data flows per second in Libdft.

ID Program Tracing FM-DFs FM-TP Libdft-Taint Libdft-DFs Libdft-TP
1 Nginx 1.04 21,249,714 4,070,826 3.20 27,306 12,136
2 Sndfile-deinterleave 0.49 5,929,082 4,070,826 1.13 9,655 14,199
3 Readelf 0.42 44,015,827 4,901,540 1.43 9,605 10,218
4 Sndfile-convert 0.35 3,631,270 7,410,755 1.11 2,602 4,066
5 Thumbnail 4.83 1,593,853,705 3,970,836 25.29 105,256 4,160
6 Eu-ranlib 0.44 4,482,776 7,348,813 1.29 11,848 15,190
7 Size 0.48 688,279 4,588,527 1.47 985 1,159
8 Thttpd 0.26 2,978,403 5,225,269 0.98 3,554 5,606
9 Libsolv 0.44 34,120,541 4,105,962 1.14 8,028 12,743

10 Mime-parse 0.35 400,299 4,447,767 1.16 207 309
11 Objdump 0.60 52,226,202 3,956,530 1.69 20,428 20,226
12 Cflow 0.70 832,777,490 4,450,975 1.90 37,764 30,211
13 Mp42aac 0.48 27,766,273 3,541,617 1.45 27,731 31,512
14 Pngout 0.28 769,360 7,693,600 0.87 4,577 8,975
15 Nm-new 0.57 38,608,796 7,693,600 3.67 119,820 39,545

other tools on the same task scales [60]. Then queries are per-
formed by randomly selecting five pairs of common sources
(input system calls) and common destinations (output system
calls, rip register at indirect calls and returns) in security tasks.
The average response time is reported in Table 2 and Table 3.

Summarization Performance in Tree Construction. The
average speed of FLOWMATRIX summarization is about
preparing 54,766 vertices on a query tree per second. For most
execution traces of CVEs, the total time costs for summariza-
tion are within 10 seconds. For the largest case, Thumbnail
with 11,181,696 instructions, FLOWMATRIX DIFT query
engine efficiently constructs the query tree within 401 sec-
onds. For some heavy application cases (e.g., mongoDB and
ghostscript), if an analyst wishes to compute a query tree
for the whole execution trace, which rarely happens in real-
world analysis, our tool finished data flow summarization
in query tree construction within 9,390 seconds and 5,772

Table 4: The performance DIFT query on traces of seven
general Linux applications. #Instr. shows the size of program
execution traces. FM-Query shows the average response time
of random queries. Those ones with (*) denote that its query
tree vertices have been reduced for easy storage and computa-
tion. FM-Sum is the summarization time in FLOWMATRIX
query tree construction. FM-DFs is the number of data flows
carried in each tree construction.

Program #Instr. FM-Query FM-Sum FM-DFs FM-TP
tar-archive 348,251 0.088 17.2 51,559,046 2,997,619
tar-untar 300,901 0.090 10.4 43,040,613 4,138,520

bzip2-compress 2,704,162 0.238 105.7 400,769,952 3,791,579
bzip2-decompress 537,937 0.127 19.6 80,392,946 4,101,681
gzip2-compress 355,531 0.095 16.2 42,062,045 2,596,423

gzip2-decompress 186,904 0.066 6.7 26,083,421 3,893,048
scp 153,290 0.049 5.4 20,682,643 3,830,119

nginx 1,616,050 0.153 52.7 205,554,578 3,900,466
mongodb 202,003,689 1.974∗ 9390.3 23,363,491,058 2,488,045

ghostscript 138,985,481 1.811∗ 5772.7 16,246,131,904 2,814,304

seconds, respectively. For real-world analysis, in most cases,
only certain parts of the program execution are interesting
and require further DIFT query analysis. Thus, tree size can
be further reduced, as well as the tree construction time. Note
that FLOWMATRIX is parallelable by design as all instruc-
tions are handled in the same operation. Table 4 shows that
FLOWMATRIX’s performance is positively correlated with
the trace length, which indicates FLOWMATRIX scales well
with resources proportional to the trace size. Also, note that
constructing query trees is a one-time effort.

Query Response Time. The runtime for tree construction
and query responding is presented in Table 3 and Table 4
for two dataset respectively. The overall runtime of DIFT
Query (≤ 0.5 s for most queries, and ≤ 1 s for all queries
except mongodb and ghostscript) is substantially smaller
than the CPU-based and GPU-assisted taint propagation. For
extreme cases with 202 million instructions, our tool manages
to answer a DIFT query in less than 2s on average. This is
expected because intermediate matrices for queries are pre-
computed in the query tree construction, resulting in far fewer
matrix multiplication operations required in DITF queries.

For cases of mongodb and ghostscript, by estimation,
they require couples of TBs to store the full query tree. Thus,
during the construction, we do not store the lowest 10 non-leaf
levels of query trees on disk. This results in 1023 times fewer
vertices on query trees. As a result of query tree reduction,
more matrix multiplications are needed in query. Besides this
trade-off, another factor is the richness of dataflows in vertices
on trees. The complexity of sparse matrix multiplication is
related to matrix’s NNZ. Those two factors lead to a longer
query time compared with other traces.

Comparison with CPU-based DIFT Baseline. We com-
pare our FLOWMATRIX DIFT query tool with our CPU-based
DIFT baseline. The baseline tool takes the same data flow
rules but performs less computation: instead of matrix-matrix
multiplication, it multiples matrices with a taint map vector
on CPU, which is the exact propagation logic for most taint

analysis tools. Note that matrix-matrix multiplication is in cu-
bic complexity, in theory, while a vector-matrix multiplication
is in square complexity.

Despite heavier computation, Table 2 shows that FLOW-
MATRIX DIFT summarization still outperforms CPU-based
DIFT baseline by around 5.6 times. The performance im-
provement is mainly credited to FLOWMATRIX’s ability to
propagate data flows in parallel on thousands of GPU cores.
In contrast, CPU baseline has to propagate taint tags from the
taint map one by one. We also verify that FLOWMATRIX has
the same result as the baseline taking the TaintInduce rules.

6.3 Comparison with Other Data Flow Analy-
sis Solutions

Data Flow Tracking Throughput. To evaluate the ability of
FLOWMATRIX query tool, we evaluate its data flow through-
put per second. Table 3 presents the numbers of tracked data
flows and data flow throughput of FLOWMATRIX summariza-
tion in security tasks. On average, FLOWMATRIX summa-
rization achieves a throughput of 5,082,955. Its best result
reaches 7,693,600 data flows per second when summariz-
ing the trace of Pngout. Notice that our query tool always
achieves a higher throughput on small traces than on large
ones. The main reason is that matrices in small traces contain
fewer data flows to be summarized.

Comparison with LibDFT. LibDFT is one of the state-
of-the-art dynamic taint analysis tools widely used in secu-
rity tasks [61]. Different from our after-the-fact approach,
LibDFT is an online instrumentation-based taint tracking tool.
For fairness, we present the performance overhead of our
dynamic instruction tracer, which writes instruction traces
to disk, as a reference for the performance comparison of
LibDFT. In general, LibDFT is able to achieve reasonable
performance overhead because of limited propagated taint
tags. Thus, we compare the data flow tracking through-puts
of FLOWMATRIX with LibDFT to show the power of our tool.
Tracked data flows by LibDFT are counted according to the
number of propagated taint tags during execution. In our ex-
periment, LibDFT achieves 9,905 data flow through-puts on
average, which is only 0.19% of the through-puts in FLOW-
MATRIX summarization on average. LibDFT’s best result
reaches 39,545 data flows per second on program Nm-new,
which remains 0.5% through-puts compared with the case
Pngout with most through-puts in FLOWMATRIX summa-
rization.

Comparison with JetStream. JetStream is a state-of-the-
art DIFT analysis tool supporting DIFT queries based on a
server cluster. FLOWMATRIX is fundamentally distinct from
JetStream: In terms of acceleration, FLOWMATRIX gain per-
formance speedup by deploying a matrix representation and
enabling GPUs as co-processors; JetStream, in contrast, paral-
lels analysis on a cluster of servers. Moreover, FLOWMATRIX
is orthogonal to JetStream. That is, FLOWMATRIX can be de-

Figure 6: FLOWMATRIX Query Tree Construction Scalability
with one GPU

ployed on servers to further speed up local DIFT computation
for each epoch in JetStream.

We compare with JetStream indirectly through a few com-
mon Linux tasks. According to the reported numbers in Jet-
Stream paper, JetStream is able to answer a DIFT query for
the first time on mongodb, the largest test case for JetStream
and FLOWMATRIX as well, within around 32 seconds with
76,042,962 data flow dependencies. The throughput is around
2,376,342 data flows per-second, with 128 CPU cores. By con-
trast, FLOWMATRIX DIFT summarization achieves a through-
put of 2,488,045 also on the task case mongodb, slightly larger
than the throughput of JetStream. However, the worst case is
gzip, where it is reported that JetStream achieves 9,628,096
dependency throughputs while FLOWMATRIX summariza-
tion only reaches 2,596,423. In other common Linux pro-
grams, FLOWMATRIX outperforms JetStream in throughput
by 2,814,304 over 2,097,464 in ghostscript. In general, the
data flow throughput of FLOWMATRIX is comparable with
JetStream, which works with 128 CPU cores.

6.4 Scalability and Bottleneck in Tree Con-
struction

We examine the scalability in tree construction. Then we
study the bottleneck and discuss how these bottlenecks can
be further addressed.

Scalability. We further evaluate the scalability of FLOW-
MATRIX query tree construction. Figure 6 shows the speedup
of performing query tree construction for each real-world ap-
plication benchmark on a log-log scale as we vary the number
of processes from 1 to 16. Results are normalized to evaluate
a construction on a single core; the ideal speedup is shown as
the diagonal line. Overall, multi-processing accelerates DIFT
of FLOWMATRIX tree construction by 4-5.5x with a mean
of 4.8x using eight processes. By examining the GPU usage,
we find that a single process only uses around 20%-25% of
GPU usage on average; the GPU utilization continues to be

tar archive
tar untar

bzip compress

bzip decompress

gzip2 compress

gzip2 decompress scp
nginx

mongodb

ghostscript
0

2

4

6

8

10

Figure 7: FLOWMATRIX Byte-level performance improve-
ment over bit-level.

tar archive
tar untar

bzip compress

bzip decompress

gzip2 compress

gzip2 decompress scp
nginx

mongodb

ghostscript0.0

0.2

0.4

0.6

0.8

1.0

tar archive
tar untar

bzip compress

bzip decompress

gzip2 compress

gzip2 decompress scp
nginx

mongodb

ghostscript0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: FLOWMATRIX Query Tree Construction Scalability

above 90% when the number of processes reaches 8 in our
experiments. With more GPUs available, FLOWMATRIX is
expected to scale up and gain further speedup.

Granularity. Although FLOWMATRIX tracks bit-level data
flows by default for accuracy, we provide users with options
to track data flows at a more efficient byte level. We evalu-
ate how would a more coarse-grained tracking level would
affect our performance shown in Figure 7. On average, data
flows are more complicated at the bit level, and the total
number reaches 21.8 times more than byte level; the byte-
level summarization is 5.5 times faster than bit-level. Among
all datasets, gzip-compress is most affected by granularity
change, which our tool achieves 8.2 times speed up when
switching to the byte level. In contrast, scp is least sensitive
to granularity. The performance only increases by 2.2 times
at the byte level.

Bottleneck. We next examine the results of FLOWMATRIX
query tree construction. Figure 8 shows the stacked bar graphs

0 2 4 6 8 10 12
Unstored Levels

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

St
or

ag
e

Ra
tio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

Qu
er

y
Ov

er
he

ad

Storage Ratio
Average Query Overhead

Figure 9: Trade-off between query time and storage size in
the optimization of reduced stored levels.

for each real-world application benchmark at eight processes.
The main bottleneck is file I/O, which takes over 50% of

execution time. The reason is that we have reached the upper-
bound speed of a single process within a single CPU core. Our
tool needs to first load rules into memory from disks and then
transfer rules to GPU memory sequentially. In this process,
the CPU plays a critical role in scheduling. By increasing
the number of processes to eight, we assign more CPU cores
to perform file I/O in parallel, increasing all benchmarks’
performance. A further improvement would be bypassing
CPU and memory, requiring new hardware. For example, in
the new generation Nvidia GPU, a technique RTX IO [62] can
load data directly from SSD and send it to GPU via PCIe. By
adopting such a technique, the performance of FLOWMATRIX
tree construction can be further improved.

Query Tree Storage Overhead and Trade-off. In our
experiment, the space cost of pre-computed matrices for the
DIFT query is proportional to the number of instructions. For
those cases where we enable the most efficient DIFT queries,
the storage overhead is around 0.325GB per 100k instructions.
For most CVE cases within fewer than one million instruc-
tions, the storage size is smaller than 10 GB. Those are the
cases where we prioritize DIFT query efficiency. In practice,
FLOWMATRIX engine can specify the height of the query tree
for construction according to particular scenarios. The height
can be decreased to maintain low storage overhead. In our
largest scenario mongodb with over 200 million instructions,
by reducing the tree height of 6, we manage to store the query
tree within 241.7GB in the disk. We evaluate this trade-off on
mongodb shown in Figure 9 with the query in the worst case.
In general, cutting the lowest six levels or fewer has limited
affection to FLOWMATRIX DIFT query usage as at most our
tool needs to summarize two sub-trees of the height of 6, but
it reduces around 50% storage size in the database. The query
overhead grows with more levels not stored on a query tree.

When 12 levels are not stored, the storage size ratio drops to
25.7% while the query overhead is non-trivial anymore, reach-
ing 1.65 seconds. In our experiment, we choose to remove ten
levels from the query tree for mongodb and ghostscript to
achieve rapid query and acceptable storage overhead. Users
are provided with options to balance the query response time
and the storage size depending on their own scenarios. Within
a large task scale, removing more levels from the query tree
would be a good choice to save disk space.

6.5 Case Study
Handling Implicit Flow. We reproduce a case study of
implicit control dependency in a popular tiny program,
TinyXML [63], which is also reported in Neutaint [64]. As
shown in List 1, p is a program input buffer. At line 4, a
member variable _closingType will be assigned with a con-
stant value (CLOSING=2) if a special character is found in
the input buffer p. At line 9, ele->ClosingType() gets
_closingType that is used to decide the program branch-
ing behavior. As _closingType is control dependent but not
directly data dependent on the input buffer, most DIFT tools
fail to track the data flows from p to _closingType.

1 // tinyxml2 / tinyxml2 . cpp :2044
2 if (*p == ’/’) {
3 // Implicit control flow dependency
4 ele -> _closingType = CLOSING ;
5 ++p;
6 }
7 char* XMLNode :: ParseDeep (...) {
8 // Broken information flows !
9 if (ele -> ClosingType () == CLOSING) {
10 ...
11 }
12 }

Listing 1: Source code of implicit control dependency in
TinyXML.

2000459 cmp al , 0x2f ; ’/’
2000460 jne 0xe ; Not jumped
2000461 mov rax , qword ptr [rbp - 8]
2000462 mov dword ptr [rax + 0x68], 2
...
2001448 call <ClosingType >
2001453 mov eax , dword ptr [rax + 0x68]
2001455 ret
2001456 cmp eax , 2 ; == CLOSING?
2001457 je 0x57

Listing 2: Part of instructions of implicit control dependency
in TinyXML. The first column shows instruction index in the
program trace.

FLOWMATRIX solves this problem by implicit flow aug-
ment. List 2 shows a fragment of the execution trace corre-
sponding to the source code in List 1. Register al in instruc-

tion cmp al, 0x2f contains a character from input buffer
p. On the branch where the cmp instruction determines, the
instruction mov dword ptr [rax + 0x68], 2 sets value
CLOSING to _closingType. Later, ClosingType is called
for the second if statement. To analyze whether this if state-
ment has a dependency, we query the data flow in backward
analysis mode, which queries all possible sources that affect
the instruction je 0x57 in the list. As expected, without im-
plicit flow augment, FLOWMATRIX DIFT query responds
with results of no dependencies. Thus, we use command line
prompt to add information flow from al to a virtual variable
at the first instruction in the list, and add flows from newly
added virtual variables to memory cell in the mov instruction
at the 4-th line. At last, we perform the same query again,
and at this time, FLOWMATRIX DIFT query replies that the
1649-th byte from the 8-th read system call is the only source
that determines the conditional jump instruction je 0x57. A
forward impact analysis query from the read system call also
confirms its influence on this instruction and the buffer p as
well.
Misconfiguration Diagnosis. We also reproduce a path traver-
sal misconfiguration on Nginx-1.11.3 [65], an execution
trace with 3,899,129 instructions and 822 system calls. File
/etc/passwd was leaked out through a Nginx-1.11.3 server.
We answered three questions used DIFT query: the channel
used to leak /etc/passwd, (2) the root cause of this leakage,
(3) the impact besides the detected leak.

7 Discussion

FLOWMATRIX scales up data flow queries significantly on an
offline mode. By taking an execution trace, FLOWMATRIX
renders information flow dependencies into linear relation-
ships. Such a matrix representation may also help online
dynamic taint tracking with GPUs, which we leave as future
work. One challenge could be optimizing data transfer latency.
In our approach, fully making use of GPU computation power
is more important than low data transfer latency. However, it
is the opposite case in online tainting. When PCIe transfers
matrices, the CPU may have already executed thousands of
instructions. Another challenge is regarding taint checking.
Online taint tools require to timely detect security policy vio-
lation. However, GPUs are not designed for quick data value
checking operations which would lead to alert hysteresis.

Our approach provides low-cost solution for adding im-
plicit flows to analyzed information flows. When facing an
under-tainting case, we do not make discussion of policy
choice for users, but provide interactive query for debug and
information flow augment as an efficient fix after diagnosis.
Thus, our solution can be integrated with other work such
as MITOS [50] which focuses on the decision problem for
indirect flows to automatically fix broken information flows.
We leave this as future work.

FLOWMATRIX supports two levels of data flow tracking

granularity, bit level and byte level. Bit-level data flow track-
ing is more precise but heavier. Sometimes it is necessary to
perform the analysis at bit-level where the data variables are
single bit [66], including flags in eflags register on x86 and bit
masking. Users may switch the granularity of FLOWMATRIX
depending on their own scenarios.
Threats to Validity First, the soundness of FLOWMATRIX
depends on TaintInduce [43], which has extensively evaluated
soundness and precision of its taint rules compared to exist-
ing taint engines. To eliminate the potential error from GPU
implementation, we also verified the correctness of FLOWMA-
TRIX results by cross-checking with our CPU-based DIFT tool
using the same TaintInduce rules. Second, FLOWMATRIX is
also affected by under-tainting / over-tainting. Under-tainting
and over-tainting cases are consequences of inaccurate taint
policy – for example, whether to track data flows for eflags
register. To address this problem, FLOWMATRIX provides
the analysts with options of information flow augment for
fine-tuning data flow propagation policy.

8 Related Work

FLOWMATRIX is a novel representation of taint rules, which
enables the first system to use GPUs as co-processors. Also,
it is the first system to efficiently support DIFT query with-
out a complex backend server infrastructure. In this section,
we discuss the closely related work in speed up DIFT rule
processing.

8.1 Information Flow Rule Representation

Prior work in taint analysis, such as TaintCheck [1],
LibDFT [45], commonly implements hand-written taint prop-
agation rules within advanced program languages and only
tracks direct data flow impacts.

Several prior works have proposed different taint rule rep-
resentations other than direct implementation in advanced lan-
guages. Jee et al. [41] proposed Taint Flow Algebra to summa-
rize the semantics of taint logic for basic blocks. Nevertheless,
the scale of summarization is not un-limited. TaintInduce [43]
learns dataflows by executing instruction and mutating in-
puts. FLOWMATRIX ’s taint rule is derived from this work.
We are the first one to identify the linearity in taint propaga-
tion and lift taint rules generated by TaintInduce to matrices.
Proximal gradient analysis has also been adopted to track
data flows with gradients over operations in programs [44].
This approach is orthogonal to TaintInduce and can be de-
ployed as our taint rule generator by transforming gradients
into matrices or a seizes of GPU operations.

A common problem in taint analysis is implicit flow track-
ing [28]. There are solutions using dependency-based taint
concept to address this problem. NeuTaint [64] identifies taint
relationship via neural program embeddings at function scale.

Bao et al. [52] track strict control flow dependencies by com-
puting the lineage of variable constraints. In contrast, FLOW-
MATRIX allows users to specify customized DIFT policy to
track implicit flows.

8.2 Query-style DIFT

FLOWMATRIX DIFT query is an after-the-fact analysis that
supports multiple DIFT queries. Most DIFT parallelization
work has focused on live analysis, which only supports a
single pre-defined DIFT query. The main related work of after-
the-fact DIFT query is JetStream [29], a system to support
DIFT query by parallelizing DIFT across a cluster. It records
the program execution first and then partitions the replay
and DIFT analysis into epochs. This approach is orthogonal
to ours, as FLOWMATRIX can be deployed to a cluster of
GPU servers. The forward propagation in JetStream can be
replaced by our GPU-assisted DIFT propagation to achieve
further speedup.

8.3 Hardware-assisted DIFT

Extensive literature has explored how to speedup DIFT itself
with special hardware by offloading the taint operations to
co-processors. Ruwase et al. [31] implement an algorithm in
the context of a Log-Based Architectures (LBA) system which
logs a program trace and delivers it to other processors. Na-
garajan et al. [32] use a separate core of a chip multiprocessor
(CMP) to track taint. Similar to those specialized architec-
tures for dynamic information flow tracking, the requirement
of special hardware prevents existing hardware-assisted ap-
proaches from being adopted using commodity hardware. To
our best knowledge, there are no prior studies using GPUs
as co-processors for DIFT. GPUs are getting more and more
popular, and have become common commodity hardware.
Moreover, many commodity CPUs have integrated graph-
ics processors, such as Intel Graphics, which also support
GPGPU development and thus can be used as FLOWMA-
TRIX’s co-processors.

FLOWMATRIX is the first one adopting GPUs to speed
up DIFT analysis. There are other prior work that also uses
GPUs in security tasks. Yu et al. [67] deploy GPUs for fast
Android App vetting by speeding up worklist algorithm for
IDFG construction. Vasiliadis et al. [68] reveal the abilities
of GPUs to accelerate microarchitectural attacks. Velea et
al. [69] propose an CPU/GPU hybrid improvement to accel-
erate string matching for malware signature detection with
low power consumption. Mendez-Lojo et al. [70] introduce
a GPU-based point-to analysis and outperform a sequential
CPU implementation for 7 times in performance.

9 Conclusion

The performance overhead of dynamic information flow anal-
ysis has long been the problem limiting its applications, which
is prohibitively expensive for query-style applications. In this
paper, we analyze the recently developed dependency-based
information flow propagation rules and recognize the linear-
ity of DIFT operations in offline dynamic information flow
analysis. Based on this finding, we present a novel matrix-
based representation, FLOWMATRIX, which enables using
GPUs as co-processors for DIFT operations. We further build
a system that supports information flow queries efficiently to
assist analysts in interactively querying data flow properties
of programs. Our evaluation shows that FLOWMATRIX scales
up data flow queries significantly and gains tremendously
speedup from GPU. We also study the performance improve-
ment and bottlenecks and demonstrate the applications in taint
analysis diagnosis and configuration file diagnosis.

Acknowledgment

We thank our shepherd, Jiang Ming, and the anonymous re-
viewers for their valuable comments. We also thank Jiahao
Liu for his help with experiments. Some of the experiments
were conducted using the infrastructure of National Cyber-
security R&D Laboratory, Singapore. This research is sup-
ported by the National Research Foundation, Singapore un-
der its Industry Alignment Fund – Pre-positioning (IAF-PP)
Funding Initiative, by the National Research Foundation, Sin-
gapore under its NSoE DeST-SCI programme (Grant No.
NSoE_DeST-SCI2019-0006), and by Ministry of Education
of Singapore under the project “Algorithmic Advances For
Program Fuzzing” (MOE-T2EP20220-0014). Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not reflect the
views of National Research Foundation, Singapore.

References

[1] James Newsome and Dawn Song. Dynamic taint analy-
sis for automatic detection, analysis, and signaturegen-
eration of exploits on commodity software. In NDSS,
2005.

[2] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin
Kirda, Christopher Kruegel, and Giovanni Vigna. Cross-
Site Scripting Prevention with Dynamic Data Tainting
and Static Analysis. In NDSS, 2007.

[3] Prateek Saxena, R Sekar, and Varun Puranik. Efficient
fine-grained binary instrumentation with applications to
taint-tracking. In CGO, 2008.

[4] James Clause, Wanchun Li, and Alessandro Orso. Dy-
tan: A Generic Dynamic Taint Analysis Framework. In
ISSTA, 2007.

[5] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-
based directed whitebox fuzzing. In ICSE, 2009.

[6] Min Gyung Kang, Stephen Mccamant, and Pongsin
Poosankam. DTA++: Dynamic Taint Analysis with
Targeted Control-Flow Propagation. In NDSS, 2011.

[7] R Sekar. An efficient black-box technique for defeating
web application attacks. In NDSS, 2009.

[8] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and
David Wagner. Detecting format string vulnerabilities
with type qaualifiers. In USENIX Security Symposium,
2001.

[9] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu
Sridharan, Omri Weisman, Omer Tripp, Marco Pistoia,
Stephen J. Fink, Manu Sridharan, and Omri Weisman.
TAJ: effective taint analysis of web applications. In
PLDI, 2009.

[10] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
TaintScope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In IEEE
S&P, 2010.

[11] Heng Yin, Dawn Song, Manuel Egele, Christopher
Kruegel, and Engin Kirda. Panorama: Capturing System-
wide Information Flow for Malware Detection and Anal-
ysis. In ACM CCS, 2007.

[12] Wei Xu, Sandeep Bhatkar, and Ramachandran Sekar.
Taint-enhanced policy enforcement: A practical ap-
proach to defeat a wide range of attacks. In USENIX
Security Symposium, 2006.

[13] Jingfei Kong, Cliff C Zou, and Huiyang Zhou. Improv-
ing software security via runtime instruction-level taint
checking. In Proceedings of the 1st Workshop on Ar-
chitectural and System Support for Improving Software
Dependability, 2006.

[14] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim,
Yuanyuan Zhou, and Youfeng Wu. Lift: A low-overhead
practical information flow tracking system for detecting
security attacks. In MICRO, 2006.

[15] Tadeusz Pietraszek and Chris Vanden Berghe. Defend-
ing against injection attacks through context-sensitive
string evaluation. In International Workshop on Recent
Advances in Intrusion Detection, 2005.

[16] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mat-
tia Fazzini, Taesoo Kim, Alessandro Orso, and Wenke

Lee. Rain: Refinable attack investigation with on-
demand inter-process information flow tracking. In
ACM CCS, 2017.

[17] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan
Downing, Taesoo Kim, Alessandro Orso, and Wenke
Lee. Enabling refinable cross-host attack investigation
with efficient data flow tagging and tracking. In USENIX
Security Symposium, 2018.

[18] Jun Zeng, Zheng Leong Chua, Yinfang Chen, Kaihang
Ji, Zhenkai Liang, and Jian Mao. Watson: Abstracting
behaviors from audit logs via aggregation of contextual
semantics. In NDSS, 2021.

[19] Jun Zeng, Xiang Wang, Jiahao Liu, Yinfang Chen,
Zhenkai Liang, Tat-Seng Chua, and Zheng Leong Chua.
Shadewatcher: Recommendation-guided cyber threat
analysis using system audit records. In IEEE S&P,
2022.

[20] Neil Vachharajani, Matthew J Bridges, Jonathan Chang,
Ram Rangan, Guilherme Ottoni, Jason A Blome,
George A Reis, Manish Vachharajani, and David I Au-
gust. Rifle: An architectural framework for user-centric
information-flow security. In MICRO, 2004.

[21] David Yu Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi
Kohno, and David Wetherall. Tainteraser: Protecting
sensitive data leaks using application-level taint tracking.
ACM SIGOPS Operating Systems Review, 2011.

[22] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher,
and Mendel Rosenblum. Understanding Data Lifetime
via Whole System Simulation. In USENIX Security
Symposium, 2004.

[23] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N Sheth. TaintDroid: An Information-flow Track-
ing System for Realtime Privacy Monitoring on Smart-
phones. In OSDI, 2010.

[24] Julian Schutte, Dennis Titze, and J.M. M.De Fuentes.
AppCaulk: Data leak prevention by injecting targeted
taint tracking into android apps. In TrustCom, 2015.

[25] Paolo Milani Comparetti, Gilbert Wondracek, Christo-
pher Kruegel, and Engin Kirda. Prospex: Protocol spec-
ification extraction. In IEEE S&P, 2009.

[26] Mona Attariyan and Jason Flinn. Automating configu-
ration troubleshooting with dynamic information flow
analysis. In OSDI, 2010.

[27] Mona Attariyan, Michael Chow, and Jason Flinn. X-
ray: Automating root-cause diagnosis of performance
anomalies in production software. In OSDI, 2012.

[28] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE S&P, 2010.

[29] Andrew Quinn, David Devecsery, Peter M Chen, and
Jason Flinn. Jetstream: Cluster-scale parallelization of
information flow queries. In OSDI, 2016.

[30] Edmund B Nightingale, Daniel Peek, Peter M Chen, and
Jason Flinn. Parallelizing security checks on commodity
hardware. In ACM Sigplan Notices, 2008.

[31] Olatunji Ruwase, Phillip B Gibbons, Todd C Mowry, Vi-
jaya Ramachandran, Shimin Chen, Michael Kozuch, and
Michael Ryan. Parallelizing dynamic information flow
tracking. In the 20th Annual Symposium on Parallelism
in Algorithms and Architectures, 2008.

[32] Vijay Nagarajan, Ho-Seop Kim, Youfeng Wu, and Rajiv
Gupta. Dynamic information flow tracking on multi-
cores. In the Workshop on Interaction Between Compil-
ers and Computer Architectures, 2008.

[33] Andrey Ermolinskiy, Sachin Katti, Scott Shenker,
L Fowler, and Murphy McCauley. Towards practical
taint tracking. EECS Department, University of Califor-
nia, Berkeley, Tech. Rep. UCB/EECS-2010-92, 2010.

[34] Kangkook Jee, Vasileios P Kemerlis, Angelos D
Keromytis, and Georgios Portokalidis. Shadowreplica:
efficient parallelization of dynamic data flow tracking.
In ACM CCS, 2013.

[35] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and
Peng Liu. Taintpipe: pipelined symbolic taint analysis.
In USENIX Security Symposium, 2015.

[36] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and
Peng Liu. Straighttaint: Decoupled offline symbolic
taint analysis. In ASE, 2016.

[37] Jim Chow, Tal Garfinkel, and Peter M Chen. Decoupling
dynamic program analysis from execution in virtual
environments. In USENIX ATC, 2008.

[38] Georgios Portokalidis, Philip Homburg, Kostas Anag-
nostakis, and Herbert Bos. Paranoid android: versatile
protection for smartphones. In ACSAC, 2010.

[39] Erik Bosman, Asia Slowinska, and Herbert Bos.
Minemu: The world’s fastest taint tracker. In RAID,
2011.

[40] Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. De-
caf++: Elastic whole-system dynamic taint analysis. In
RAID, 2019.

[41] Kangkook Jee, Georgios Portokalidis, Vasileios P Ke-
merlis, Soumyadeep Ghosh, David I August, and An-
gelos D Keromytis. A general approach for efficiently
accelerating software-based dynamic data flow tracking
on commodity hardware. In NDSS, 2012.

[42] Olatunji Ruwase, Shimin Chen, Phillip B Gibbons, and
Todd C Mowry. Decoupled lifeguards: enabling path
optimizations for dynamic correctness checking tools.
In ACM Sigplan Notices, 2010.

[43] Zheng Leong Chua, Yanhao Wang, Teodora Baluta, Pra-
teek Saxena, Zhenkai Liang, and Purui Su. One engine
to serve’em all: Inferring taint rules without architec-
tural semantics. In NDSS, 2019.

[44] Gabriel Ryan, Abhishek Shah, Dongdong She, Kous-
tubha Bhat, and Suman Jana. Fine grained dataflow
tracking with proximal gradients. In USENIX Security
Symposium, 2021.

[45] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook
Jee, and Angelos D. Keromytis. Libdft: Practical Dy-
namic Data Flow Tracking for Commodity Systems. In
VEE, 2012.

[46] Heng Yin and Dawn Song. Temu: Binary code analysis
via whole-system layered annotative execution. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2010-3, 2010.

[47] Andrew Henderson, Aravind Prakash, Lok Kwong Yan,
Xunchao Hu, Xujiewen Wang, Rundong Zhou, and Heng
Yin. Make it work, make it right, make it fast: building a
platform-neutral whole-system dynamic binary analysis
platform. In ISSTA, 2014.

[48] Wikipedia contributors. Sparse matrix — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/
index.php?title=Sparse_matrix, 2021. [Online;
accessed 20-December-2021].

[49] Steven Dalton, Luke Olson, and Nathan Bell. Optimiz-
ing sparse matrix—matrix multiplication for the gpu.
ACM Transactions on Mathematical Software (TOMS),
41(4):1–20, 2015.

[50] Nikolaos Sapountzis, Ruimin Sun, Xuetao Wei, Yier Jin,
Jedidiah Crandall, and Daniela Oliveira. Mitos: Optimal
decisioning for the indirect flow propagation dilemma in
dynamic information flow tracking systems. In ICDCS,
2020.

[51] Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Pra-
teek Saxena. Identifying arbitrary memory access vul-
nerabilities in privilege-separated software. In ES-
ORICS, 2015.

https://en.wikipedia.org/w/index.php?title=Sparse_matrix
https://en.wikipedia.org/w/index.php?title=Sparse_matrix

[52] Tao Bao, Yunhui Zheng, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu. Strict control dependence and its
effect on dynamic information flow analyses. In ISSTA,
2010.

[53] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, 2016.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS. 2019.

[55] NVIDIA. cusparse. https://docs.nvidia.com/
cuda/cusparse/.

[56] Matthias Fey. Pytorchsparse. https://github.com/
rusty1s/pytorch_sparse, 2022.

[57] National vulnerability database. https://nvd.nist.
gov/.

[58] Derek Bruening, Qin Zhao, and Saman Amarasinghe.
Transparent dynamic instrumentation. ACM SIGPLAN
Notices, 47(7):133–144, 2012.

[59] John Galea and Daniel Kroening. The taint rabbit: Op-
timizing generic taint analysis with dynamic fast path
generation. In ACM AsiaCCS, 2020.

[60] Erik van der Kouwe, Gernot Heiser, Dennis Andriesse,
Herbert Bos, and Cristiano Giuffrida. Sok: Benchmark-
ing flaws in systems security. In IEEE EuroS&P, 2019.

[61] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In IEEE S&P, 2018.

[62] NVIDIA. Nvidia rtx io: Gpu accel-
erated storage technology. https://
www.nvidia.com/en-sg/geforce/news/
rtx-io-gpu-accelerated-storage-technology/.

[63] Tinyxml2. https://github.com/leethomason/
tinyxml2. 2022.

[64] Dongdong She, Yizheng Chen, Abhishek Shah,
Baishakhi Ray, and Suman Jana. Neutaint: Efficient
dynamic taint analysis with neural networks. In IEEE
S&P, 2020.

[65] Cwe-22: Improper limitation of a pathname to a re-
stricted directory (’path traversal’). https://cwe.
mitre.org/data/definitions/22.html, 2021.

[66] Babak Yadegari and Saumya Debray. Bit-level taint anal-
ysis. In IEEE 14th International Working Conference
on Source Code Analysis and Manipulation, 2014.

[67] Xiaodong Yu, Fengguo Wei, Xinming Ou, Michela Bec-
chi, Tekin Bicer, and Danfeng Daphne Yao. Gpu-based
static data-flow analysis for fast and scalable android
app vetting. In IEEE IPDPS, 2020.

[68] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Grand pwning unit: Accelerating mi-
croarchitectural attacks with the gpu. In IEEE S&P,
2018.

[69] Radu Velea and Ştefan Drăgan. Cpu/gpu hybrid detec-
tion for malware signatures. In 2017 International Con-
ference on Computer and Applications (ICCA). IEEE,
2017.

[70] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pin-
gali. A gpu implementation of inclusion-based points-to
analysis. ACM SIGPLAN Notices, 2012.

[71] Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. An empirical study of crypto-
graphic misuse in android applications. In ACM CCS,
2013.

A Appendix

A.1 Information Flow Rules
Figure 10 shows the taint rules to track information flow for
the instruction add in three different taint engines, TEMU [46],
libdft [45] and DECAF [47]. libdft implements taint prop-
agation rules as stand alone propagation functions that are
instrumented during execution while QEMU-based TEMU and
DECAF implement the taint rules in the emulator by modify-
ing the emulated instructions to propagate taint. This results
in multiple, non-interoperable ways of propagating taint be-
tween the different approaches. Although the taint propaga-
tion semantics for the instruction is the same, the implemented
rules are wildly different. TEMU defines taint rules for differ-
ent instructions with different op-codes and implements taint
propagation in other functions. libdft inlines taint propa-
gation in instrumentation during execution. It is a huge case
switch of op-code, decoded by X86 Encoder Decoder (XED),
and in each case lays taint propagation. Although DECAF is
also QEMU-based, similar to TEMU, it propagates taint in Tiny
Code Generator (TCG) level, which is an intermediate rep-
resentation (IR). These difference can be seen as the result

https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cusparse/
https://github.com/rusty1s/pytorch_sparse
https://github.com/rusty1s/pytorch_sparse
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.nvidia.com/en-sg/geforce/news/rtx-io-gpu-accelerated-storage-technology/
https://www.nvidia.com/en-sg/geforce/news/rtx-io-gpu-accelerated-storage-technology/
https://www.nvidia.com/en-sg/geforce/news/rtx-io-gpu-accelerated-storage-technology/
https://github.com/leethomason/tinyxml2
https://github.com/leethomason/tinyxml2
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/22.html

void taint_parallel_compute (
shad , dest , opcode , ...)

{
if (opcode == llvm ::

Instruction :: Or) {
cb_mask_out . cb_mask =

(cb_mask_1 . zero_mask &
cb_mask_2 . cb_mask) |

(cb_mask_2 . zero_mask &
cb_mask_1 . cb_mask);

}
write_cb_masks (shad , dest ,

cb_mask_out ,...) ;
...
}

(a) Panda

void r2r_binary_opl (dst , src ,
...) {

threadctx ->vcpu.gpr[dst]|=
threadctx ->vcpu.gpr[src];

}
void ins_inspect (INS ins) {

...
switch (ins_indx) {

case XED_ICLASS_OR :
INS_InsertCall (
r2r_binary_opl , REG32_INDX
(reg_dst), REG32_INDX (
reg_src), ...);

}
}

(b) Libdft

int gen_taintcheck_insn (...) {
switch (opc) {
case INDEX_op_or_i32 :

/* t0 = arg1 || arg2 */
tcg_gen_or_i32 (t0 ,a1 ,a2);
/* t2 = (t0 != 0) */
tcg_gen_movi_i32 (t_z ,0);
tcg_gen_setcond_i32 (
TCG_COND_NE ,t2 ,t_z ,t0);
/* res = ~t2 */
tcg_gen_neg_i32 (res ,t2);
break ;
...

}
}

(c) Decaf

Figure 10: Different implementations of the taint rule of or instruction in Panda, libdft and DECAF. Panda defines controlled
bit mask to calculate which bits are attacker controlled. libdft directly performs an or operation from src’s tag to dst’s tag.
DECAF encodes the propagation logic with tcg IR. Code has been simplified for easier reading.

of ad-hoc, tightly coupled implementation specific paradigm
used in the design of these engines. For example the type
of statement where taint analysis is used on results in some
rules being defined on top of intermediate representations
(IR), while others directly on machine instruction set architec-
tures (ISAs). Other than making reusing of existing taint rules
next to impossible, these implementation specific designs also
prevents a single, unified way of propagating taint.

A.2 Matrix Normalization
However, there is still a gap to fill when multiplying data flow
matrices: each data flow matrix is using local variable state
and unaware of others’ context. For instance, we consider a
task to summarize the data flow of mov rax, [rbp-8] and
and rcx, rax. The size of two data flow matrices are both
128×128, but in a different context: the variable state, [rax,
[rbp-8]], of the first instruction consists of rax (size of 64)
and [rbp-8] (size of 64), while the second is [rcx, rax]
with the same length of 128. Thus, before the summarization,
there is a need to normalize both data flow matrices within
the superset of variable states.

Intuitively, there are two steps in normalization: extending
and reordering. Specifically, a n× n local matrix M has to
be first extended to m×m to match the shape of the normal-
ized matrix by appending zero rows and zero columns. Next,
rows and columns in the extended matrix must be reordered
to match the order of normalized variable state. For exam-
ple, if the goal is to normalize the data flow matrix of and
rcx, rax to a normalized state [rax, [rbp-8], rcx], we
can first extend the state to [rcx, rax, NULL] and then re-
ordering it to [rax, NULL([rbp-8]), rcx]. Let E be an
identity matrix In concatenated with m− n zero rows. The
extension of M can be achieved by pre-multiplied with E

and post-multiplied with ET , where ET is the transpose of
E (i.e., an identity matrix In concatenated with m− n zero
columns). After matrix extension, the reordering can be di-
vided into elementary operations: row-switching transforma-
tions and column-switching transformations. As the extended
matrix is also a square matrix of which rows and columns
both represent the extended state, the reordering is equivalent
to pre-multiply a permutation matrix P and post-multiply its
transpose PT . So far, the production matrix M′ is a m×m ma-
trix where M′ = P(EMET)PT . Let U be the product of P×E,
then the above formula can be simplified to M′ = UMUT .
So far, M′ is ready for data flow summarization, except for
one thing: it does not inherit data flows from extended vari-
ables. Thus, ones have to be placed on the main diagonal for
those extended rows and columns and update our formula:
M̂ =U(M− In)UT + Im.

A.3 Implementation Details
System Call Hooking. Traditional DIFT analysis tools
hook system calls, and set taint status for source system calls
or check taint status for sink system calls [4, 45]. FLOWMA-
TRIX does not follow the design of taint tag propagation but
tracks all information flows in matrices. Our matrix design
brings a new challenge in handling system calls. Namely,
there is no proper column in matrix can be chosen as the in-
formation flow source for an input system call, such as read,
recvfrom, etc. The reason is that, as a system call is for a
program to request a service from the kernel, from the point
of view of a process, a system call introduces new informa-
tion flows from "nowhere": they do not originate from any
in-process variable. To address this challenge, we need to
introduce a new data variable into the matrix for each system

call. That is, similar to how FLOWMATRIX handles implicit
flows, we extend the matrix with one column and one row
representing the system call variable for each system call in
trace. For each of them, the appended variable is influenced
by all of the system call’s arguments and influences the re-
turn value (rax register). Furthermore, for those input system
calls which load data into process, the system call variable
influences the loaded buffer; for those output system calls
which write data to externals, the written buffer influences the
system call variable.

Recall that it is creating a global information flow snapshot
for a certain position by adding a new variable into matrix
and setting information flows towards it. Then, setting infor-
mation flows from an extended variable is creating a global
information flow source. By combining two types of opera-
tions, FLOWMATRIX enables us a rapid n-to-n query among
multiple system calls in O(1) time, which has wide appli-
cations in sensitive data leakage detection [24], dependency
explosion resolution [16, 17] and etc. The rationale is, unlike
other data variables, such snapshots and global sources are
not limited by variable scopes and can be access from a global
view. Specifically, in the matrix of a root vertex on a query tree,
its sub-matrix of all system call variables over themselves is
a linear map describing dependencies among all system calls.
Informally, a non-zero element in the sub-matrix represents
there is an information flow from the system call correspond-
ing to its column to another system call corresponding to its
row.

Constant Flow Tracking. Traditional DIFT analysis do
not track data flows from a constant (e.g., mov eax, 1) or a
sanitized register (e.g., xor eax, eax) [28]. This is reason-
able as constant flows are not worth tracking in most cases.
However, in some data-flow-based security scenarios, ana-
lysts do have the needs to query the impact of a constant. For
example, in cryptographic misuse detection, analysts would
check whether a constant has been set as the random seed
for a cryptographic function [71]. By using traditional DIFT
tools, the analysts have to manually modify the tool’s code
to hook a taint status set function to the place where the con-
stant is introduced and register a taint status check function
of arguments when the program calls a cryptographic func-
tion. This requires expert knowledge about a DIFT tool and
code modification for each scenario. FLOWMATRIX takes
into account both situations and provides users with code-free
constant flow queries. In common scenarios, we treat instruc-
tions of constant flows as empty information flows (operands
do not inherit their own data flow). If a query’s source is a
constant flow instruction, then FLOWMATRIX automatically
tracks the information flow from the constant. Specifically, we
extend the source instruction’s matrix with one row and one
column similar to the scenarios in system calls and set data
flows from the extended variable to the destination operands
in instruction. Then we query the information flow from its
next instruction to the destination and multiply the extended
matrix with the query result.

	Introduction
	Background
	Dynamic Information Flow Analysis
	Limitations of Existing DIFT Rules

	FlowMatrix Approach
	Matrix Representation of Information Flow Operations
	GPU-assisted FlowMatrix Operations

	FlowMatrix-Based DIFT Query
	Overview
	Query Tree Construction
	FlowMatrix Extension for Implicit Flows and Indirect Flows

	Implementation
	Evaluation
	Experiment Setup
	Performance of DIFT Query
	Comparison with Other Data Flow Analysis Solutions
	Scalability and Bottleneck in Tree Construction
	Case Study

	Discussion
	Related Work
	Information Flow Rule Representation
	Query-style DIFT
	Hardware-assisted DIFT

	Conclusion
	Appendix
	Information Flow Rules
	Matrix Normalization
	Implementation Details

