
AttacKG: Constructing Technique Knowledge
Graph from Cyber Threat Intelligence Reports

Zhenyuan Li1, Jun Zeng2, Yan Chen3, and Zhenkai Liang2

1 Zhejiang University, Hangzhou, China
2 National University of Singapore, Singapore

3 Northwestern University, Evanston, USA

Abstract. Cyber attacks are becoming more sophisticated and diverse,
making detection increasingly challenging. To combat these attacks, se-
curity practitioners actively summarize and exchange their knowledge
about attacks across organizations in the form of cyber threat intelli-
gence (CTI) reports. However, as CTI reports written in natural language
texts are not structured for automatic analysis, the report usage requires
tedious manual efforts of threat intelligence recovery. Additionally, indi-
vidual reports typically cover only a limited aspect of attack patterns
(e.g., techniques) and thus are insufficient to provide a comprehensive
view of attacks with multiple variants.
To take advantage of threat intelligence delivered by CTI reports, we
propose AttacKG to automatically extract structured attack behavior
graphs from CTI reports and identify the associated attack techniques.
We then aggregate threat intelligence across reports to collect different
aspects of techniques and enhance attack behavior graphs into technique
knowledge graphs (TKGs).
In our evaluation against real-world CTI reports from diverse intelli-
gence sources, AttacKG effectively identifies 28,262 attack techniques
with 8,393 unique Indicators of Compromises. To further verify the ac-
curacy of AttacKG in extracting threat intelligence, we run AttacKG on
16 manually labeled CTI reports. Experimental results show that At-
tacKG accurately identifies attack-relevant entities, dependencies, and
techniques with F1-scores of 0.887, 0.896, and 0.789, which outperforms
the state-of-the-art approaches (Extractor [37] and TTPDrill [25]). More-
over, our TKGs directly benefit downstream security practices built atop
attack techniques, e.g., advanced persistent threat detection and cyber
attack reconstruction.

1 Introduction

Advanced cyber attacks have been growing rapidly. The trend of attacks is
to adopt increasingly sophisticated tactics and diverse techniques [13], such as
multi-stage Advanced Persistent Threats (APTs), making detection more chal-
lenging than ever. To combat these attacks, security analysts actively exchange
threat intelligence to enhance detection capabilities.

Among them, structured threat intelligence defined by open standards (e.g.,
OpenIoC [12], STIX [9], and CybOX [4]) are widely shared on open-source plat-
forms (e.g., AlienVault OTX[1] and IBM X-Force[8]) and utilized in security
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operation centers. Such intelligence standards define cyber attacks as Indicators
of Compromises (IoCs), which are artifacts in forensic intrusions, such as MD5
hashes of malware samples and IP/domains of command-and-control (C&C)
servers. However, recent studies have shown that detection with disconnected
IoCs is easy to bypass [29,33]. For example, attackers can frequently change do-
mains used in attack campaigns to evade detection. In comparison, by taking
IoC interactions into account, graph-based detection typically demonstrates bet-
ter robustness [34] by identifying attack techniques aligned to adversarial goals.
Specifically, attack techniques [24,14] are basic units that describe “how” at-
tack actions are performed and are well used in security solutions (e.g., endpoint
detection and response systems).

Attack techniques can be found in unstructured CTI reports written by se-
curity practitioners based on their observations of attack scenarios in the wild.
In particular, a well-written report precisely describes attack behaviors through
enumerating attack-relevant entities (e.g., CVE-2017-11882 ) and their depen-
dencies (e.g., stager connecting to C&C sever). However, recovering attack be-
haviors from textual CTI requires non-trivial manual efforts. Intuitively, a sys-
tem capable of automatically extracting attack technique knowledge from CTI
reports can significantly benefit cyber defenses by reducing human efforts and
accelerating attack responses. We identify two key challenges in the automation
of knowledge extraction from CTI reports: (1) As CTI reports are written in an
informal format, in natural languages, identifying structured attack behaviors
needs to analyze semantics in unstructured CTI texts; (2) Attack knowledge is
dispersed across multiple reports. Individual reports commonly focus on lim-
ited/incomplete attack cases, making it difficult to obtain a comprehensive view
of attacks. And existing works on CTI report parsing [37,25,23,26,36] only focus
on attack cases within a single report.

In this paper, we propose AttacKG , a novel approach to aggregate threat in-
telligence across CTI reports and construct a knowledge-enhanced attack graph
that summarizes attack-technique-level workflows in CTI reports. Based on en-
hanced knowledge, we introduce a new concept called technique knowledge graph
(TKG), which identifies causal techniques from attack graphs to describe com-
plete attack chains in CTI reports. More specifically, we first adopt a pipeline
to parse a CTI report and extract attack entities and their dependencies as
an attack graph. Then, we initialize technique templates using attack graphs
built upon technique procedure examples crawled from the MITRE ATT&CK
knowledge base [14]. Next, we utilize a revised graph alignment algorithm to
match attack graphs from CTI reports and technique templates. Towards this
end, we can align and refine attack entities in both CTI reports and technique
templates. While technique templates aggregate specific and potentially new
intelligence from real-world attack scenarios, attack graphs can leverage such
knowledge from templates to construct TKGs.

We implement AttacKG and evaluate it against 7,373 procedures of 179
techniques crawled from MITRE ATT&CK and 1,515 CTI reports collected
from multiple intelligence sources [3,5]. Our experimental result demonstrates
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that AttacKG substantially outperforms existing CTI parsing solutions such as
EXTRACTOR [37] and TTPDrill [25]: (1) With our CTI report parsing pipeline,
AttacKG accurately constructs attack graphs from reports with F1-scores of
0.887 and 0.896 for entities and dependencies extraction, respectively; (2) Based
on extracted attack graphs, AttacKG accurately identifies attack techniques with
an F1-score of 0.789; (3) AttacKG successfully collect 28,262 techniques, and
8,393 unique IoCs from 1,515 CTI reports.

To the best of our knowledge, this is the first work to aggregate attack knowl-
edge from multiple CTI reports at the technique level. In particular, our work
makes the following contributions:

– We present a new pipeline for CTI report parsing with better efficiency and
effectiveness in constructing attack graphs.

– We propose the design of technique templates to describe and collect tech-
nique knowledge, and a revised graph alignment algorithm to identify attack
techniques with templates. By aligning templates with technique implemen-
tations described in attack graphs, we exchange the knowledge from both to
refine each other and form technique knowledge graphs (TKGs).

– We implement AttacKG (open sourced4) and evaluate it with 1,515 real-
world CTI reports. The results demonstrate that AttacKG accurately ex-
tracts attack graphs from reports and effectively aggregates technique-level
threat intelligence from multiple unstructured CTI reports. We also show
TKGs’ benefits with two case studies.

2 Background and Related Work

In this section, we first introduce the outbreaking attack mutations. Then, we
introduce state-of-the-art threat intelligence extraction solutions. Finally, we
present a real-world CTI report as a motivating example for intuitive illustration.

2.1 Cyber Attacks and Reports

Attackers actively create attack variants to evade detection. To systematize and
summarize the behaviors in attack variants, MITRE proposed the ATT&CK
Tactics-Techniques-Procedures (TTP) matrix based on real-world observations
of cyber attacks. In the hierarchical TTPs matrix, tactics describe “why” an
adversarial action is performed, which are typically fixed for an attack, while the
selections and implementations of techniques that describe “how” to perform the
adversarial action are more flexible.

As Figure 1 shows, the commonly used technique “T1547-Boot or Logon Au-
tostart Execution” for tactic “Persistent” can be implemented in at least four
different ways: (A) “Registry Run Keys”, (B) “Auto-start folder”, (C) “Short-
cut Modification”, and (D) “DLL Side-loading”. The number of variants grows

4 To facilitate follow-up research, we release the source code of AttacKG at https:
//github.com/li-zhenyuan/Knowledge-enhanced-Attack-Graph.

https://github.com/li-zhenyuan/Knowledge-enhanced-Attack-Graph
https://github.com/li-zhenyuan/Knowledge-enhanced-Attack-Graph
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(A) To be started during the boot process of the infected machine, the malware creates the following registry key: 
HKCU\Software\Classes\CLSID\{42aedc87-2188-41fd-b9a3-0c966feabec1}\InprocServer32 = %APPDATA%\shdocvw.tlp.
(B) Confucius has dropped malicious files into the startup folder %AppData%\Microsoft\Windows\Start 
Menu\Programs\Startup on a compromised host in order to maintain persistence.
(C) S-Type may create the file %HOMEPATH%\Start Menu\Programs\Startup\Realtek {Unique Identifier}.lnk, which 
points to the malicious msdtc.exe file already created in the %CommonFiles% directory.
(D) This results in the user seeing only the Flash_Adobe_Install.exe file to execute in order to install what they believe 
to be an update to Flash Player. When run, it will automatically load goopdate.dll due to search order hijacking. 

Fig. 1: Technique template generated by AttacKG and corresponding real-world de-

scription for “T1547-Boot or Logon Autostart Execution” with four variants corre-

sponding to fourteen MITRE sub-techniques categorized as (A) Registry Run Keys,

(B) Auto-start folder, (C) Shortcut Modification, and (D) DLL Side-loading.

exponentially if detailed implementations, such as different selections of the reg-
istry key, are taken into consideration. Our observation is that while the ways
of technique implementation are relatively limited, the implementation details
are much more varied. Therefore, it is reasonable to believe that a system that
can identify various attack techniques and collect the corresponding implementa-
tion details would significantly benefit downstream security tasks (e.g., intrusion
detection and attack forensics).

The manually-crafted TTP matrix cannot cover various technique imple-
mentations. Such detailed implementation knowledge only comes from practice.
Thus, security practitioners actively gather and share attack knowledge as threat
intelligence. Such cyber threat intelligence (CTI) is typically managed and ex-
changed in the form of either structured and machine-digestible Indicators of
Compromise (IoCs) or unstructured and natural language reports.

2.2 Threat Intelligence Extraction

Cyber threat intelligence (CTI) plays a vital role in security warfare to keep up
with the rapidly evolving landscape of cyber attacks [35,21]. To facilitate CTI
knowledge exchange and management, the security community has standardized
open formats (e.g., OpenIoC [12], STIX [9], and CybOX [4]) to describe Indi-
cators of Compromises (IoCs). Though structured and machine-readable, such
intelligence lacks semantic information about how IoCs interact to form attack
chains. While in this paper, we try to fulfill this semantic gap with attack-
technique-level knowledge aggregated across CTI reports.

Poirot [33] utilizes manually extracted and generalized (attack) query graphs
for intrusion detection in provenance graphs constructed from system logs, which
validates the efficacy of threat intelligence in detection. However, manually ex-
tracting attack-relevant information from uninstructed texts is labor-intensive
and error-prone, hindering CTI’s applications in practice. Therefore, several ap-
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Table 1: Comparison of threat intelligence extraction methods

Automatic Graph-structure Technique-aware Cross-reports

Poirot [33] ✗ ✓ ✗ ✗
iACE [32] ✓ ✗ ✗ ✗

Extractor [37] & ThreatRaptor [22] ✓ ✓ ✗ ✗
TTPDrill [25] & rcATT[28], etc. ✓ ✗ ✓ ✗

AttacKG ✓ ✓ ✓ ✓

proaches have been proposed to analyze CTI reports automatically. As Table 1
shows, these works can be roughly divided into several categories. Specifically,
iACE [32] presents a graph mining technique to collect IoCs available in tens
of thousands of security articles. Extractor [37] and ThreatRaptor [22] cus-
tomize NLP techniques to model attack behaviors in texts as attack graphs.
TTPDrill [25], rcATT [28] and ChainSmith [39] derive threat actions from re-
ports and map them to attack patterns (e.g., tactic and techniques in MITRE
ATT&CK [14]) with pre-defined ontology or machine learning techniques. Simi-
lar to prior studies, the large body of AttacKG is to automate attack knowledge
extraction from CTI. Nevertheless, AttacKG distinguishes itself from these works
in the sense that it identifies TTPs and constructs technique knowledge graphs
(TKGs) to summarize technique-level knowledge across CTI reports.

2.3 Motivating Example

Figure 2 presents a real-world APT attack campaign called Frankenstein [7].
The campaign name comes from the ability of its threat actors to piece together
different independent techniques. As shown, this campaign consists of four at-
tack techniques, namely, T1566-Phishing E-mail, T1204-User Execution, T1203-
Exploitation and T1547-Boot Autostart. Each technique involves multiple enti-
ties and dependencies to accomplish one or more tactical attack objectives. It
presents a typical multi-stage attack campaign that consists of multiple atomic
techniques. To evade detection, this attack can be morphed easily by replacing
any technique with an alternative one. Therefore, summarized knowledge of dif-
ferent attack techniques, which is robust and semantically rich, is beneficial to
the detection and investigation of cyber attacks [30,33,25].

From Figure 2, Subfigures (B) to (D) show the attack knowledge retrieved
from the report sample by TTPDrill [25], ChainSmith [39], and EXTRAC-
TOR [37], respectively, while Subfigure (A) represents the manually generated
ground-truth. Subfigure (B) shows attack techniques identified by TTPDrill with
manually-defined threat ontology. As shown, TTPDrill can only extract separate
techniques from CTI reports without the whole picture. Besides, the ontology
provided by TTPDrill contains only action-object pairs for technique identifi-
cation, which is too vague and may lead to numerous false positives. As the
example shows, sending a document is recognized as exfiltration in TTPDrill.
However, the “trojanized” document is, in effect, sent by an attacker for exploita-
tion. As shown in Subfigure (C), ChainSmith provides a semantic layer on top
of IoCs that captures different roles of IoCs in a malicious campaign. However,
they only give a coarse-grained four-stage classification with limited information.
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The threat actors sent the trojanized Microsoft Word documents, probably via email. Talos discovered a document named
MinutesofMeeting-2May19.docx. Once the victim opens the document, it fetches a remove template from the actor-controlled
website, hxxp://droobox[.]online:80/luncher.doc. Once the luncher.doc was downloaded, it used CVE-2017-11882, to execute code
on the victim's machine. After the exploit, the file would write a series of base64-encoded PowerShell commands that acted
as a stager and set up persistence by adding it to the HKCU\Software\Microsoft\Windows\CurrentVersion\Run Registry key.

(A) Ground-truth

microsoft word document
(MinutesofMeeting-2May19.docx)

website
(hxxp://droobox.online:80

/luncher.doc)

document
(luncher.doc)

powershell
commands

(D) Attack graph by 
“EXTRACTOR”

*

IP ‘*’

MinutesofMeeting-
2May19.docx

luncher.doc

https://blog.talosintelligence.com/2019/06/frankenstein-campaign.html

(E) Our Technique Knowledge Graph
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Control\Session, …)

T1547: Boot Autostart
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(*.docx, *.rtf,, *.rar, …)

T1203: Exploitation

(B) Part of attack techniques extracted with “TTPDrill”

Adding to HKCU\Software\Microsoft\Wi
ndows\CurrentVersion\Run

Sent
Microsoft word document

(MinutesofMeeting-2May19.docx)
Use Exploit

(CVE-2017-11882)

T1203: Exploitation T1547: Boot Autostart(×) T1048: Exfiltration Over Alternative Protocol

(C) Attack chain extracted with “ChainSmith”

Exploit
(CVE-2017-11882)

Stage - Exploitation

hxxp://droobox.online:80/luncher.doc

Stage - Installation

luncher.doc

Stage - Baiting Stage – C&C

e-mail
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(HKCU\Software\Microsoft\W
indows\CurrentVersion\Run)

(HKCU\Software\Microsoft\W
indows\CurrentVersion\Run)

Exploit
(CVE-\d+-\d+)

Exploit
(CVE-\d+-\d+)

Fig. 2: A motivating example.

As Subfigure (D) shows, the attack graph generated by EXTRACTOR merges
all non-IoC entities of the same type. It thus loses the structural information of
attack behaviors, making it impossible to identify attack techniques accurately.

Subfigure (E) illustrates the ideal result we would like to extract in this
paper. As long as we can locate attack techniques in attack graphs extracted
from CTI reports, we are able to aggregate technique-level knowledge and en-
rich attack graphs with more comprehensive knowledge about the corresponding
techniques. For example, we can find more possible vulnerabilities that can be
used in T1203-Exploitation for Execution as a replacement for CVE-2017-11882
appeared in this report. Moreover, the distinct threat intelligence can be col-
lected and aggregated at the technique level across multiple CTI reports.

3 Approach

3.1 Overview of AttacKG

Figure 3 shows the architecture of AttacKG. At a high level, AttacKG has two
subsystems: (1) an attack graph extraction pipeline for CTI reports parsing and
attack graphs building, and (2) an attack technique identification subsystem for
technique template generation and technique identification in attack graphs.

Extract Attack Graphs from CTI Reports. To accurately extract attack
graphs from CTI reports, we design a parsing pipeline of five stages. As shown in
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Fig. 3: Overview of AttacKG architecture.

Figure 3, this pipeline has two inputs: (1) technique procedure examples crawled
from MITRE ATT&CK describing individual techniques, and (2) CTI reports
describing multi-technique attack campaigns. These two inputs are isomorphic,
and the corresponding outputs of the pipeline are single-technique graphs for
attack techniques and multi-technique graphs for attack campaigns.

Identify Attack Technique with Templates. As discussed in Section 2, in-
dividual CTI reports typically have a limited aspect of attack patterns without
a global view. In this paper, we aim to bridge this gap by aggregating threat
intelligence across CTI reports with technique templates. For this purpose, we
propose technique templates to aggregate technique-level intelligence and a re-
vised graph alignment algorithm to identify techniques in attack graphs.

As Figure 3 shows, technique templates are initialized with single-technique
attack graphs extracted from technique examples crawled from MITRE. Then,
we adopt a revised attack graph alignment algorithm to identify attack tech-
niques in multi-technique graphs extracted from CTI reports with the pre-
initialized templates. By aligning multi-technique attack graphs and technique
templates, we can enhance the attack graphs with attack knowledge in templates
into a technique knowledge graph (TKG) and update the technique templates
with rich intelligence from CTI reports.

Finally, we obtain two outputs: (1) technique templates that collect and
aggregate attack knowledge across CTI reports at the technique level; (2) TKGs
that summarize complete attack chains in CTI reports. It is worth mentioning
that AttacKG can tolerate a few false-positives/false-negatives in templates or
attack graphs as long as techniques implementations appear multiple times in
different reports and most of them are parsed correctly.
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3.2 CTI Reports Parser

In this section, we introduce our primary approach for extracting attack graphs
from CTI reports. Well-written CTI reports include detailed technical descrip-
tions of how attack-related entities interact to accomplish adversarial objectives
in attack campaigns. Despite the rich information, it is challenging to accurately
extract attack behaviors from CTI reports written in natural language. Specifi-
cally, we identify four key challenges:

[C1] Domain-specific terms identification. CTI reports often contain nu-
merous security-related terms, such as IoCs and attack family names, that in-
clude special characters and confuse most off-the-shelf NLP models.

[C2] Attack entity and dependency extraction. Unlike provenance graphs
that record attack actions with full details, CTI reports are written in a more
summarized manner, providing an overview of the attack workflow. Thus, the
attack graphs extracted from CTI reports usually illustrate coarse-grained and
incomplete dependencies among entities.

[C3] Co-reference resolution. Co-reference is very common in natural lan-
guage. We identify two types of co-reference in CTI reports. Explicit co-references
use pronouns like “it” and “this” or definite article “the,” while implicit co-
references use synonyms to refer to entities that appear in the preceding text.

[C4] Attack graph construction and simplification. Attack scenarios de-
scribed in natural language are redundant and fractured, which NLP technology
cannot address. Therefore we need to construct and simplify graphs with the
assistance of domain knowledge.

To overcome the above challenges, we design a new CTI report parsing
pipeline based on the existing ones [22,6], with better performance in handling
co-reference and constructing attack graphs. Notice that most CTI reports are
shared in the forms of PDF and HTML, which we further translate into a uniform
text format with open-source tools (e.g.,pdfpulmer and html2text).

IoC Recognition and Protection with Regex [C1]. CTI reports contain
numerous domain-specific terms, such as CVE-2017-21880 and /etc/passwd,
which include special characters and thus confuse general NLP models. In order
to avoid the influence of these terms while preserving the information on attack
behaviors, we identify them with a refined version of open-source IoC recog-
nizer [10] by extending the regex set and replacing them with commonly used
words according to their entity types. We also record the location of replaced
words for subsequent resumption of the IoCs. Afterward, we are able to adopt
standard models [17] for first-stage CTI report parsing.

Attack Entity and Dependency Extraction [C2, C3]. In addition to IoC
entities, non-IoC entities also play important roles in attack technique expression.
For better extraction, we classify entities into six types. Among them, Actor
and Executable represent subjects of attack behaviors, while File, Network
Connection, and Registry denote common system-level objects. Additionally,
we identify several “other” types of entities that frequently appear in certain
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techniques but are difficult to directly map to system objects. As a result, we
classify them into a separate category named Others.

Then, we adopt a learning-based Named Entity Recognition (NER) model
to recognize entities in CTI reports. The model is pre-trained on a large gen-
eral corpus5 and re-trained with technique examples randomly sampled from
MITRE that cover all techniques and entity types. To improve the accuracy of
entity identification, we further use a customized rule-based entity recognizer6

to identify well-defined and common entities. Furthermore, we leverage an open-
source co-reference resolver, co-referee7, for explicit co-reference’s resolution. All
pronouns for an attack-relevant entity are recorded in a linked table, and the
corresponding nodes will be merged when constructing the attack graph.

For intra-sentence dependency extraction, we first construct a dependency
tree for each sentence with a learning-based nature language parsing model [17].
Then, we enumerate all pairs of attack-relevant entities (including their pro-
nouns) and estimate the distance between them with the distance of their Low-
est Common Ancestor (LCA) and the distance of their position in the sentence.
Each entity will establish dependencies with its nearest entity unless only one
entity exists in the sentence.

Attack Graph Generation and Simplification [C3, C4]. Given extracted
attack entities and dependencies, we can initialize a graph, called attack graph
(Ga), where nodes represent attack-relevant entities and edges represent their
dependencies. So far, we have only considered the dependencies within sentences.
Cross-sentence dependencies will be established through both explicit and im-
plicit co-reference nodes. In particular, by merging co-reference nodes, we not
only remove redundant nodes but also combine sentence-level sub-graphs into a
whole attack graph. Explicit co-reference can be recognized by general NLP mod-
els, as discussed in Section 3.2, while implicit co-references need to be identified
based on entities’ type and character-level overlaps. To do so, we use node-level
alignment scores, as discussed in Section 3.3, to determine whether two nodes
should be treated as co-references nodes.

Finally, we generate a concise and clear attack graph describing all attack
behaviors that appear in a CTI report. Our evaluation of a wide range of CTI
reports demonstrates that the attack graph extraction pipeline is both accu-
rate and effective (Section 4.2). And a few false positives/negatives have limited
impact on the subsequent fuzzy alignment-based technique identification.

3.3 Technique Templates and Graph Alignment Algorithm

In order to identify techniques from attack graphs while preserving their imple-
mentation details mentioned in CTI reports, we first need a universal description
of attack techniques. Towards this end, we propose the design of graph-structured
technique templates to represent individual techniques. Then, inspired by the
graph alignment algorithm in Poirot [33] for attack behavior identification in

5 https://github.com/explosion/spacy-models/releases/tag/en core web sm-3.1.0
6 https://spacy.io/api/entityruler
7 https://github.com/msg-systems/coreferee

https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.1.0
https://spacy.io/api/entityruler
https://github.com/msg-systems/coreferee
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provenance graphs, we design a revised graph alignment algorithm for technique
identification in attack graphs with templates. Finally, we introduce how to ini-
tialize and update technique templates with alignment results.

Design of Technique Templates To describe attack behaviors (represented
as graphs) within techniques while aggregating threat intelligence, we model
technique templates also as graphs (Gt) with statistics of occurrences of entities
(nodes) and dependencies (edges) in different CTI reports. In the graph, nodes
represent aggregated entity knowledge, and edges represent possible dependen-
cies among them.

Moreover, we calculate the confidence of entities and dependencies by their
occurrences in different reports. In this way, as long as techniques appear multi-
ple times in different reports and most of them are parsed correctly, the impact of
possible false positives and/or false negatives introduced by AttacKG’s misiden-
tifications and adversarial or low-quality CTI reports can be tolerated.

Graph Alignment for Technique Identification and Technique Knowl-
edge Graph Construction. As discussed above, both attack graphs we ex-
tracted in Section 3.2 and technique templates we generated in Section 3.3 may
contain false positives and/or false negatives. Therefore, we cannot use the exact
match to align them. As an alternative, we propose a graph alignment algorithm
between technique template Gt and attack graph Ga based on fuzzy matching.
Specifically, as shown in Table 2, we define two kinds of alignments, i.e., node
alignment between two nodes in two separate graphs and graph alignment that
measures the overall similarity between a technique template and a specific sub-
graph in an attack graph.

Table 2: Notations in Graph Alignment

Notation Description

i : k Node alignment between node i and k from separate graphs
i 99K j A dependency (path) from node i to node j
Gt :: Ga Graph alignment between Template Gt and Attack Graph Ga

Γ (i : k) Alignment score between node i to node k
Γ (Gt :: Ga) Alignment score between Template Gt and Attack Graph Ga

ΓN (Gt :: Ga) Node-level alignment score between Template Gt and Graph Ga

ΓE(Gt :: Ga) Dependency-level alignment score between Template Gt and Graph Ga

Node alignment. We first enumerate every node k in an attack graph Ga

to find its alignment candidates for every node i in a technique template Gt by
calculating the alignment score for nodes Γ (i : k). The alignment score between
two nodes is computed by Equations (1) and (2):

Γ (i : k) =

{
γ + (1− γ) · Sim(i, k) itype = ktype

0 itype ̸= ktype
, (1)

Sim(i, k) = Max(sim(iIoC , kIoC), sim(iNLP , kNLP )). (2)
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Intuitively, if node i and node k have different types, then the alignment score
will be zero. Otherwise, they will get a type-matched score γ. Then the similar-
ity of nodes’ attributes (Sim(i, k)) can be determined by calculating character
level [11] similarity (sim(i, k)) of IoC terms and natural language descriptions,
which is enumerated in templates. If the alignment score reaches a pre-defined
threshold, we will record the node alignment candidate in Ga to a list of the
corresponding template node.

Graph alignment. Afterward, we iterate through all candidate nodes to cal-
culate the overall alignment scores Γ (Gt :: Ga) in two parts: node-level alignment
scores ΓN (Gt :: Ga) and edge-level alignment scores ΓE(Gt :: Ga). Specifically,
the alignment score between a technique template and an attack graph can be
computed by Equations (3), (4), and (5):

ΓN (Gt :: Ga) =
∑

i∈Gt,k∈Ga

(Γ (i : k) · ioccur)
/ ∑

i∈Gt

(ioccur), (3)

ΓE(Gt :: Ga) =
∑

i 99K j ∈ Gt

k 99K l ∈ Ga

(
(Γ (i : k) · Γ (j : l)

Cmin(k 99K l)
· (i 99K j)occur)

/ ∑
i99Kj∈Ga

((i 99K j)occur),

(4)

Γ (Gt :: Ga) =
1

2
· (ΓN (Gt :: Ga) + ΓE(Gt :: Ga)). (5)

As shown, the node-level alignment score (ΓN (Gt :: Ga)) is a weighted sum
of the alignment score (Γ (i : k)) of each node. The weights are proportional
to the number of node occurrences (ioccur) recorded in the template. In this
way, we enhance the impact of important entities and dependencies that com-
monly appear in different CTI reports. Meanwhile, the edge-level alignment score
(ΓE(Gt :: Ga)) depends on three factors: alignment scores of the nodes at both
ends of the dependency (Γ (i : k) and Γ (j : l)); the minimal hop between both
ends of the dependency (Cmin(k 99K l)) in the attack graph; the number of
node occurrences ((i 99K j)occur) recorded in the template. If two nodes are not
connected, the dependency between them (Cmin(k 99K l)) will be set to infinity.
Finally, the outputs of all five equations above are normalized to interval [0, 1].
We note that although the graph traversal is used, the computational overhead
of the whole algorithm is acceptable due to the limited size of both attack graph
and technique templates.

After obtaining alignment scores for candidate permutations of each tech-
nique, we compare them with a pre-defined threshold and finally select aligned
subgraphs of techniques. It is noteworthy that one attack graph node can be
aligned to multiple techniques, and one technique can be found multiple time in
an attack graph as long as each aligned subgraph have an alignment score above
the threshold.

TKG construction.With the graph alignment results, we can attach attack
knowledge described in technique templates, including alternative entities and
techniques, to the corresponding positions in an attack graph. Then, we can
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obtain the technique knowledge graph (TKG) that introduces the whole attack
chain in a CTI report with enhanced knowledge.

Initialization and Updating of Technique Templates Both the initializa-
tion and updating of technique templates rely on the graph alignment results.

Updating. By aligning, the node in an attack graph can be mapped to the
node in the identified technique template. Then we update the IoC and natural
language description sets in the template node with new terms from the aligned
attack graph node. This allows us to aggregate threat intelligence across CTI
reports at the technique level.

Initialization. The initialization of technique templates starts with a ran-
dom single-technique attack graph extracted from MITRE technique examples.
Then we align the initial template with other single-technique attack graphs
of the same technique. The information in aligned attack graph nodes will be
merged into the corresponding template node. And the unaligned nodes will be
added to templates as new nodes, which is different from the updating process.

Finally, we generate the technique template that aggregates threat intel-
ligence and covers multiple technique variants across multiple reports, as the
example shown in Figure 1 and Table 3.

Table 3: Attack entities in the template of the technique T1547-Boot or Logon

Autostart Execution.

Template
entities

NLP
descriptions

IoC terms

Executable
scripts,

macros, . . .
*.exe, *.ps1, . . .

Register
register keys,
register, . . .

HKLM\. . . \windows\currentversion\winlogon\*,
HKLM\. . . \active setup\installed components\*,
HKLM\Software\*\Run, . . .

Autostart Folder
startup folder,

path, . . .
%HOMEPATH%\Start Menu\Programs\Startup\,
∼/.config/autostart/*, . . .

Shortcut File shortcut, . . . *.lnk, . . .

Side-loading DLL
winlogon helper DLL,

SSP DLL, . . .
sspisrv.dll, . . .

4 Evaluation

In this section, we focus on evaluating AttacKG’s accuracy of attack graph ex-
traction and technique identification as a CTI report parser and its effectiveness
in technique-level intelligence aggregation as a CTI knowledge collector. In par-
ticular, our evaluation aims at answering the following research questions (RQs):
(RQ1) How accurate is AttacKG in extracting attack graphs (attack-related en-
tities and dependencies) from CTI reports? (RQ2) How accurate is AttacKG in
identifying attack techniques in CTI reports? (RQ3) How effective is AttacKG
in aggregating technique-level intelligence from massive CTI reports? Finally, we
also would like to evaluate how TKGs benefit downstream security tasks.
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4.1 Evaluation Setup

To evaluate AttacKG, we crawled 1,515 real-world CTI reports mentioned in
MITRE ATT&CK references whose sources range from Cisco Talos Intelligence
Group [3], Microsoft Security Intelligence Center [16], etc. Moreover, we crawled
7,373 technique procedure examples out of 179 techniques from the MITRE
ATT&CK knowledge-base [14] to formulate our technique templates.

To answer RQ1 and RQ2, we manually label the ground-truth of entities,
dependencies, and techniques in 16 of the collected reports: (1) DARPA TC
Reports: We select five attack reports released by the DARPA TC program’s
fifth engagement that cover different OS platforms (i.e., Linux, Windows, and
FreeBSD), vulnerabilities (e.g., Firefox backdoor), and exploits (e.g., Firefox
BITS Micro). (2) Real-world APT Campaign Reports: To explore the perfor-
mance of AttacKG in practice, we select another eleven public CTI reports that
describe APT campaigns from three well-known threat groups, i.e., Franken-
stein [7], OceanLotus (APT32) [20], and Cobalt Group [15].

4.2 Evaluation Results

RQ1: How accurate is AttacKG in extracting attack graphs from CTI
reports? A typical attack technique consists of multiple threat actions pre-
sented as a set of connected entities in an attack graph. In particular, the accu-
rate extraction of attack graphs is an essential starting point toward automated
identification of attack techniques from CTI reports. To evaluate the accuracy
of AttacKG in extracting attack graphs, we adopt the aforementioned 16 well-
labeled CTI reports. We manually identify attack-related entities in the reports
and correlate entities based on our domain knowledge of the attack workflow. It
is noteworthy that in addition to natural language descriptions, DARPA TC re-
ports also provide the graph representation of attacks, which serves as additional
documentation to complement our manual labels.

Given ground-truth entities and dependencies in the reports, we are able
to compare AttacKG with the state-of-the-art open-source8 CTI report parser,
EXTRACTOR [37], in terms of the precision, recall, and F1-score. For a fair
comparison, we enable all optimizations in EXTRACTOR (e.g., Ellipsis Subject
Resolution) when constructing attack graphs upon textual attack descriptions.
As discussed in Section 3, an entity may correspond to multiple co-references
across a CTI report. Since our goal is to identify unique entities (e.g., IoCs), we
merge co-reference entities in the attack graph and integrate their dependencies
with the remaining entities.

Table 4 summarizes the results of AttacKG and EXTRACTOR in capturing
entities and dependencies from the selected 16 CTI reports(Rows 2-7). As can
be seen, despite slightly lower precision caused by a higher false-positive rate,
AttacKG yields better accuracy overall (with an average F1-score improvement
of 0.12) than EXTRACTOR due to a much lower false-negative rate. This is
expected as EXTRACTOR aggregates all non-IoC entities of the same type

8 https://github.com/ksatvat/EXTRACTOR

https://github.com/ksatvat/EXTRACTOR
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Table 4: Accuracy of attack graph extraction and technique identification in 16 CTI

reports. (Columns 2-9 present the count of manually-generated ground-truth and

−false negative(+false positive) in extracting attack-related entities, dependencies,

and techniques. Columns 10-12 present the overall Precision, Recall, and F1-score.)

CTI reports
Entities Dependencies Techniques

Manual Extractor AttacKG Manual Extractor AttacKG Manual TTPDrill AttacKG

TC Firefox DNS Drakon APT 10 -4 (+4) -0 (+1) 9 -4 (+3) -2 (+1) 8 -2 (+10) -0 (+3)
TC Firefox Drakon Copykatz 6 -2 (+0) -1 (+0) 5 -2 (+0) -2 (+0) 4 -1 (+13) -1 (+0)
TC Firefox BITS Micro APT 11 -6 (+0) -1 (+4) 10 -7 (+0) -0 (+0) 5 -1 (+14) -2 (+2)
TC SSH BinFmt-Elevate 6 -4 (+0) -1 (+0) 5 -4 (+0) -0 (+0) 5 -2 (+14) -2 (+2)
TC Nginx Drakon APT 15 -2 (+0) -2 (+0) 15 -0 (+0) -2 (+0) 6 -2 (+22) -0 (+2)
Frankenstein Campaign 14 -3 (+1) -0 (+2) 16 -5 (+1) -0 (+2) 9 -1 (+18) -1 (+1)
OceanLotus(APT32) Campaign 7 -0 (+2) -0 (+2) 7 -0 (+1) -1 (+0) 5 -1 (+12) -2 (+0)
Cobalt Campaign 17 -6 (+0) -1 (+5) 17 -4 (+0) -1 (+2) 8 -2 (+21) -1 (+1)
DeputyDog Campaign 13 -1 (+2) -0 (+2) 14 -1 (+1) -2 (+0) 10 -1 (+35) -0 (+6)
HawkEye Campaign 16 -2 (+3) -3 (+4) 17 -5 (+3) -3 (+2) 11 -2 (+64) -1 (+3)
DustySky Campaign 12 -2 (+1) -0 (+3) 12 -2 (+1) -0 (+3) 5 -0 (+32) -0 (+1)
TrickLoad Spyware Campaign 17 -3 (+1) -0 (+0) 16 -4 (+0) -0 (+1) 4 -0 (+18) -2 (+0)
Emotet Campaign 8 -4 (+0) -1 (+1) 7 -4 (+0) -2 (+1) 7 -2 (+16) -3 (+0)
Uroburos Campaign 12 -1 (+2) -2 (+3) 13 -3 (+0) -2 (+0) 7 -0 (+23) -1 (+2)
APT41 Campaign 13 -1 (+5) -1 (+0) 12 -0 (+1) -1 (+2) 6 -2 (+26) -1 (+1)
Espionage Campaign 11 -2 (+6) -3 (+1) 10 -3 (+2) -3 (+1) 4 -0 (+19) -0 (+1)

Overall Presicion 1.000 0.843 0.860 1.000 0.913 0.906 1.000 0.196 0.771
Overall Recall 1.000 0.771 0.915 1.000 0.741 0.886 1.000 0.837 0.808
Overall F-1 Score 1.000 0.806 0.887 1.000 0.818 0.896 1.000 0.318 0.789

(e.g., process) into one entity, as shown in Figure 2. In other words, no matter
how many false-positive entities EXTRACTOR produces, they are treated as one
false extraction as long as they belong to the same type. It is noteworthy that
such aggregation design inevitably losses structural information of attack graphs
and makes follow-up technique identification almost impossible. Hence, we only
compare AttacKG with EXTRACTOR in extracting attack graphs rather than
identifying attack techniques.

RQ2: How accurate is AttacKG in identifying attack techniques in
CTI reports? To answer RQ2, we use AttacKG to identify attack techniques in
the 16 CTI reports and compare it with the state-of-the-art technique identifier,
TTPDrill [25]. The core idea of TTPDrill is to extract threat actions from CTI
reports and attribute such actions to techniques based on threat-action ontol-
ogy. Specifically, it manually defines 392 threat actions for 187 attack techniques
in the original paper, while such ontology knowledge base has been extended
to cover 3,092 threat actions for 246 attack techniques in its latest open-source
implementation9. Also noteworthy is that all attack techniques used by TTP-
Drill are derived from an old version of the MITRE ATT&CK matrix. To allow
for a consistent comparison, we map every technique in TTPDrill to the latest
version technique via the hyperlinks provided by MITRE. For example, T1086-
PowerShell in TTPDrill is updated to T1059/001-Command and Scripting In-
terpreter: PowerShell.

We evaluate AttacKG and TTPDrill on the 16 CTI reports annotated with
the ground-truth techniques adopted in the attacks. The technique identification
results are summarized in the last three rows in Table 4. We can observe that
while both AttacKG and TTPDrill achieve reasonably low false-negative rates,

9 https://github.com/mpurba1/TTPDrill-0.3

https://github.com/mpurba1/TTPDrill-0.3
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TTPDrill is prone to high volumes of false-positive techniques (15.5 false posi-
tives per a report on average), which is nearly three times as many as the true
positives. As a result, while the recall of AttacKG is only slightly higher than
TTPDrill by 0.1, AttacKG significantly outperforms TTPDrill in terms of the
precision and F1-score by 0.575 and 0.462, respectively. This result makes sense
as TTPDrill treats threat actions extracted from CTI reports as action-object
pairs. Accordingly, techniques that share partial threat actions tend to look
similar in TTPDrill. In contrast, AttacKG aligns techniques to attack graphs,
considering the full contexts of threat actions.

Moreover, it is worth mentioning that we use fuzzy matching based on align-
ment scores for technique identification; thus, our approach can correctly identify
attack techniques even with FPs/FNs in technique templates and/or extracted
attack graphs. Our observation is that the overall accuracy is highest when the
graph alignment score’s threshold is 0.85, The details of the threshold selection
can be found in Appendix 4.4. To verify the importance of each component
in AttacKG towards technique identification, we perform an ablation study by
considering four variants of AttacKG, as discussed in Appendix 4.4.

RQ3: How effective is AttacKG at aggregating technique-level intelli-
gence from massive reports? To answer RQ3, we explore the effectiveness of
AttacKG in extracting threat intelligence (e.g., techniques and IoCs entities) on
1,515 CTI reports collected from different intelligence sources. Table 5 lists the
ten most common techniques that appeared in the 1,515 reports and the num-
ber of their corresponding unique IoCs, which mostly overlap with manually
generated top TTP lists by PICUS [18] and redcanary [19].

Table 5: Effectiveness of Threat Intelligence Extraction from 1,515 CTI Reports.

Top 6 Techniques
Occurrences
in reports

#Unique IoCs

Executable Network File Registry Vulner.

T1071 - Command & Control 1113 12 452 371 - 12
T1059 - Scripting Interpreter 1089 6 394 284 100 9
T1083 - File/Directory Discovery 1060 - - 249 - -
T1170 - Indicator Removal 990 6 - 255 74 7
T1105 - Ingress Tool Transfer 990 - 389 261 - -
T1003 - OS Credential Dumping 961 - - 220 - -

All Techniques Summary 28262 495 2813 4634 384 67

Each report, on average, contains 18.7 techniques and 5.5 unique IoCs, and
different techniques likely involve different IoCs. Note that most CTI reports do
not provide unified and formatted intelligence to validate our extracted results,
which is also our motivation behind this work. Therefore, we randomly select
several technique templates with intelligence aggregated from reports for manual
investigation. Specifically, we observe that templates successfully collect unique
IoCs for different technique implementations across CTI reports. As the example
in Figure 1 and Table 3 shows, we identify multiple unique IoC terms playing
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similar roles in different reports. Such template-aggregated intelligence can di-
rectly enrich our understanding of attack techniques. Furthermore, the TKG
built on templates can help understand the entire attack and possible variants
for more robust detection and investigation, as shown in Section 2.3.

4.3 Case Study

This subsection discusses how TKGs can be adopted in real-world security tasks
with case studies. Specifically, TKGs adopt the collated knowledge to enrich
reports, thus helping to understand and reconstruct the attacks involved. In
addition, TKGs with aggregated technique-level intelligence can enhance the
detection of attack variants.

TKG for attack reconstruction. In order for security practitioners and
researchers to have an in-depth analysis, they have to bridge the knowledge gap
between the real attacks and CTI reports. This gap can be addressed by having a
first-hand practical environment that thoroughly describes how attack steps are
performed in the CTI reports. AttacKG provides structured knowledge about
an attack scenario, making it easier to reproduce cyber attacks in a testbed
environment, benefiting analysts [38] with high fidelity and live reconstructed
environment with in-depth details. We have demonstrated how AttacKG sup-
ports attack reconstruction in [31].

Taking the Frankenstein campaign as an example, with the TKG extracted
from the corresponding report, we can quickly identify nine techniques for six
tactics involved in the campaign, including T1566-Phishing for tactic Initial
Access, T1547-Boot Autostart for tactic Persistence, T1203-Exploitation for Ex-
ecution for tactic Execution, etc. Then, we can infer the environment needed
to reconstruct the attack based on the techniques and entities involved in the
attack. Specifically, autostart with registry implies that the attack is running in
Windows. The use of vulnerability (CVE-2017-11882 ) for execution indicates the
requirement of specific versions of Microsoft Office. After setup the environment,
we can reproduce the campaign with open-source attack technique implemen-
tation, such as Atomi-Red-Teams [2]. All in all, AttacKG provides necessary
information as the first step in the reconstruction process.

TKGs for attack variants detection. As discussed in Section 2.1, frequent
and widely used attack variants are posing challenges for detection. Take a simple
T1204-User Execution and T1547-Boot Autostart two-stage attack excerpted
from Frankenstein Campaign, for example. Subfigures (A) and (B) in Figure 4
demonstrate the attack and its variants with three nodes mutated. Specifically,
the file server URL in T1204 was changed, and the implementation of T1547 was
switched from (A) Registry Run Keys to (D) DLL Side-loading. It is noteworthy
that such changes will not affect the functionality of the attack.

Then, three representative intelligence-based detection schemes based on dif-
ferent granularity are selected for comparison, namely, 1) iACE [32] that au-
tomatically extracts node-level intelligence (subfigure (C)), 2) Poirot [33] that
adopt manually-extracted attack graphs for threat hunting (subfigure (D)), and
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(E) Technique-level Signatures

(A) Original Campaign 

http://droobox[.]online:80/luncher.doc

HKCU\Software\Microsoft\
Windows\CurrentVersion\Run

(B) Mutated Campaign 

https://drive[.]google.com/file/d/...

2

4

goopdate.dll

MinutesofMeeting-
2May19.docx

1

MinutesofMeeting-2May19.docx
3’

2’

1

4’
Flash.exe

(C) Node-level Signatures/IoCs

1. MinutesofMeeting-2May19.docx; 2. http://droobox.online:80/luncher.doc; 
3. Powershell; 4. HKCU\Software\Microsoft\Windows\CurrentVersion\Run

(D) Attack-level Signatures

1. *.docx; 2. %External URL/IP%; 
3. Powershell; 4. HKCU\Software\Microsoft\Windows\CurrentVersion\Run

Powershell
3

T
12

04 1. *.docx/*.pdf/...
2. %External URL/IP%

T
15

47
(A

) 3. %Executable%
4. HKCU\Software\*\Run T

15
47

(D
) 3. %Executable%

4. %Side-loading DLL% ...

...

Fig. 4: TKG for attack variants detection. (Red outlined mismatch items.)

3) our approach that aggregates technique-level intelligence from multiple re-
ports (subfigure (E)). As the matching results show, to avoid introducing nu-
merous false positives, node intelligence-based detection requires exact matching,
which can be easily bypassed by obfuscation. By considering structure infor-
mation, attack-level matching allows the generalization of node information to
improve detection generality. However, attackers can still easily evade detection
by changing techniques used in the campaign.

Nevertheless, the technique-level intelligence we provide enables detectors to
detect different attack techniques independently. Moreover, the pooled technique
knowledge from multiple reports can effectively improve the detection of vari-
ous variants. And the aggregated intelligence can be automatically merged with
approaches like Eiger [27] for better generality.

4.4 Minor Evaluation Points

Selecting the Threshold Value The selection of the threshold value for
node/graph alignment scores affects the accuracy and efficiency of AttacKG.
Specifically, too low a threshold for graph alignment score could result in pre-
mature matching (false positives), while too high could lead to missing reason-
able matches (false negatives). For node alignment score, too low a threshold
could leave unnecessary alignment candidates and cost longer report analysis
time, while too high could lead to false negatives. Thus, there are trade-offs in
choosing optimal threshold values. To determine optimal threshold values, we
measure the F-score and report analysis time using varying threshold values, as
shown in Figure 5, and select optimal threshold values (0.65 for node alignment,
0.85 for graph alignment) that make each index better at the same time.

Ablation Study of AttacKG. In particular, we first remove part of the
attributes in entities: the IoC information and natural language text termed
AttacKGw\o IoC information and AttacKGw\o natural language text, respectively.
Note that unlike the EXTRACTOR’s practice of merging entities, which may
result in information loss, we only remove partial entity attributes without sac-
rificing the structural information of attack graphs. Moreover, we obtain another
variant by filtering out dependencies in attack graphs termedAttacKGw\o dependencies.
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Fig. 5: Threshold selection

That is, we predict attack techniques only based on entity sets. Finally, we disable
the graph simplification component termed AttacKGw\o graph simplification.

Table 6: Ablation study of different components used in technique identification.

Components Precision Recall F1-Score

w/ all component 0.782 0.860 0.819
w/o IoC information 0.833 0.600 0.698
w/o natural language text 0.690 0.800 0.741
w/o dependencies 0.667 0.480 0.558
w/o graph simplification 0.696 0.780 0.736

As different component combinations may affect the distribution of alignment
scores, we adjust and choose identification thresholds separately for AttacKG
variants in light of the optimal F1-scores. The results are summarized in Table 6.
We find that removing any component would degrade AttacKG ’s performance,
which well justifies our design choice. Especially, AttacKGw\o dependencies consis-
tently performs the worst across all evaluation metrics. It verifies the substantial
influence of graph structures in technique identification.

Efficiency of AttacKG Settings. We experimentally compared AttacKG’s
efficiency with TTPDrill and Extractor on the 16 CTI report samples mentioned
in Section 4.1 on a PC with AMD Ryzen 7-4800H Processor 2.9 GHz, 8 Cores,
and 16 Gigabytes of memory, running Windows 11 64-bit Professional. The size
of the reports used as samples ranges from 61 words to 1029 words, with an
average of 278.2 words.

Results. Extractor is the most complex system that consists of multiple NLP
models and thus has the highest runtime overhead, taking 239.70 seconds on
average to parse a report. Compared to Extractor, AttacKG adopts a simpler
CTI report parsing pipeline. On average, it takes 8.9 seconds and 15.1 seconds for
graph extraction and technique identification, respectively, totaling 24.0 seconds.
TTPDrill, on the other hand, uses the simplest model without constructing
attack graphs and thus is the fastest, taking only 5.9 seconds on average per
report, but at the cost of a high false-positive rate.
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5 Conclusion

In this paper, we propose an automated solution for retrieving structured threat
intelligence from CTI reports. We use the notion of technique templates to sum-
marize attack-technique-level threat intelligence across CTI reports. Then, we
leverage attack knowledge in the templates to enhance attack graphs extracted
from CTI reports and generate the technical knowledge graph (TKG). We imple-
ment our prototype system, AttacKG, and evaluate it with 1,515 real-world CTI
reports. Our evaluation results show that AttacKG can extract attack graphs
from CTI reports accurately and aggregate technique-level threat intelligence
from massive reports effectively.
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