
Unraveling the Key of Machine Learning Solutions for Android
Malware Detection

Jiahao Liu
National University of Singapore

Jun Zeng
Huawei

Fabio Pierazzi
King’s College London

Lorenzo Cavallaro
University College London

Zhenkai Liang
National University of Singapore

ABSTRACT
Androidmalware detection serves as the front line against malicious
apps. With the rapid advancement of machine learning (ML), ML-
based Android malware detection has attracted increasing attention
due to its capability of automatically capturing malicious patterns
from Android APKs. These learning-driven methods have reported
promising results in detecting malware. However, the absence of
an in-depth analysis of current research progress makes it difficult
to gain a holistic picture of the state of the art in this area.

This paper presents a comprehensive investigation to date into
ML-based Android malware detection with empirical and quantita-
tive analysis. We first survey the literature, categorizing contribu-
tions into a taxonomy based on the Android feature engineering and
ML modeling pipeline. Then, we design a general-propose frame-
work for ML-based Android malware detection, re-implement 12
representative approaches from different research communities,
and evaluate them from three primary dimensions, i.e., effective-
ness, robustness, and efficiency. The evaluation reveals that ML-
based approaches still face open challenges and provides insightful
findings like more powerful ML models are not the silver bullet
for designing better malware detectors. We further summarize our
findings and put forth recommendations to guide future research.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation.

KEYWORDS
Android malware detection, machine learning, empirical analysis,
quantitative analysis

1 INTRODUCTION
Since 2011, Android has become the best-selling operating system
(OS) on smartphones [11], captivating billions of users globally. Its
worldwide popularity and importance, however, make it a primary
target for cybercriminals [5, 12]. These cyber-attacks have resulted
in not only privacy breaches but also financial losses. As such,
there is a pressing demand to detect Android malware before its
installation, causing security concerns.

Android malware detection takes as input an Android Pack-
age Kit (APK) and outputs a probability of the APK being mali-
cious. Traditional methods involve manual analysis of suspicious
APKs and summarization of malicious patterns as hand-crafted
rules [34, 37], but this strategy is not scalable or effective. It falls
short in handling the surfeit of new Android software produced
annually and proves ineffective against previously unknown mal-
ware. Instead, recent advancements leverage machine learning (ML)

to improve the scalability and accuracy in Android malware de-
tection [14, 18, 49, 68, 71, 83, 98, 99, 104]. A common paradigm is
extracting features from APKs (e.g., permissions and API calls), en-
coding these features into numeric vectors, and applyingMLmodels
(e.g., support vector machine and neural network) to automatically
distinguish malware from benign apps, aka., goodware.

Over the past decade, Android malware detection has experi-
enced increased attention from various communities, such as secu-
rity, software engineering, and machine learning. Much attention
has been given to exploring various combinations of APK features
and ML models. The trend to date is primarily driven by advance-
ments in ML models (e.g., graph neural network [49]) and analogies
drawn from other well-studied fields (e.g., social network [98]).
Most existing approaches report high F1 scores (up to 0.99). Such
promising results motivate us to ask a number of important re-
search questions. For example: How does the existing literature
represent and incorporate diverse features into ML models for An-
droid malware detection? How do different approaches compare
when evaluated on the same datasets, metrics, and toolchains? Are
current ML-based approaches sufficient to meet the detection re-
quirements in real-world scenarios? Does a more powerful ML
model necessarily yield better detection results? Does incorporat-
ing more features to describe app behaviors always come with
better results? Is there a positive correlation between detection
effectiveness and computational efficiency?

In this paper, we aim to investigate the current state of ML-based
Android malware detection and offer an in-depth understanding
of this field with empirical and quantitative analysis. Given the
significant growth of app availability — as seen with Google Play’s
app count reaching 3.72 million, up 38% from 2022 [6] — this study
focuses on assessing approaches that are scalable to large datasets
and practical in real-world use cases. To conduct the investigation,
we begin with dissecting the ML-based Android malware detection
pipeline into three phases: APK characterization, feature repre-
sentation, and ML modeling. Guided by this taxonomy, we aim to
empirically analyze the related literature to explore how current ap-
proaches detect Android malware. Afterwards, we experimentally
compare the results from a number of representative approaches,
allowing us to understand the advancements and challenges en-
countered in the field. While instructive, several challenges are
identified when conducting the comparison.
• Existing experimental results are not directly comparable. Previ-

ous approaches are usually evaluated on datasets of different
sizes, goodware-to-malware ratios, and training-to-testing ra-
tios [18, 51, 63]. Moreover, they report outcomes using diverse
metrics (e.g., F1-score, Accuracy, and False Positive Rate), making
it unclear which method performs better under specific settings.

1

ar
X

iv
:2

40
2.

02
95

3v
1

 [
cs

.C
R

]
 5

 F
eb

 2
02

4

Jiahao Liu, Jun Zeng, Fabio Pierazzi, Lorenzo Cavallaro, and Zhenkai Liang

In addition, they often rely on different toolchains to develop
detectors, which introduce ambiguity — whether the promising
results stem from the novelty of the methodology or not [92].

• Real-world scenarios, e.g., malware evolution, obfuscation, and
adversarial attacks, are not often fully considered in many ex-
isting studies. Android malware detectors face a rapid threat
landscape [22], with malware continually evolving to evade de-
tection. The growing usage of obfuscation also makes malware
harder to detect as its malicious intentions are hidden [17]. Ad-
ditionally, ML models can be tricked by intentionally perturbed
inputs [25, 45, 91]. Although the impacts of these scenarios have
been studied [26, 29, 81], a comprehensive assessment is often
missed, leading to a gap in understanding the primary challenges
in real-world malware detection.

• Most methods overlook reporting the end-to-end efficiency from
feature engineering to ML modeling.With the exponential growth
of apps in sizes and complexities, feature extraction gradually
becomes notably time-consuming — for example, it can take up
to 30 minutes to gather API paths from one app [101]. Further-
more, as ML models evolve in complexity, they demand greater
computational power to achieve state-of-the-art results. Unfor-
tunately, it remains uncertain what prices to pay to gain the
desired results in Android malware detection.
To tackle these issues, we design a general-purpose framework,

FrameDroid, to assess 12 representative approaches from three
research communities, namely, security [18, 49, 58, 69, 71, 101, 104],
software engineering [96, 98, 99], and machine learning [51, 63].
Particularly, we ensure that the same task (e.g., feature extraction)
across different methods is performed using the same toolchain
to eliminate potential evaluation discrepancies. Moreover, Frame-
Droid is modular and configurable, facilitating the development
of new malware detectors and the design of various evaluation
scenarios. For evaluation, we randomly sample 221,310 apps from
the public AndroZoo [15] repository, covering the period from 2011
to 2020. The goodware-to-malware ratio is set as 10% to mimic a
realistic setting [81]. To make the experiments mirror real-world
conditions, we evaluate the selected approaches using standardized
metrics, focusing on the following aspects: the effectiveness and ef-
ficiency in malware detection, the robustness against app evolution
and obfuscation, and the resilience against adversarial attacks.

Through empirical and quantitative analysis, we draw a holistic
picture of ML-based Android malware detection. Specifically, APK
characterization and ML modeling remain central themes in this
field. Many recent detectors achieve comparable results under the
same experimental settings. However, their effectiveness in detec-
tion still falls short in more challenging scenarios, such as those
with limited data volumes or under adversarial attacks. Moreover,
we discover that powerful ML models are not a silver bullet for
better detection outcomes. Also, while APK features are important
to depict apps, sometimes adding more features counterintuitively
leads to negative impacts. Another interesting observation is that
increased computational overhead is not a reliable indicator of
enhanced detection capabilities. Future work should pay more at-
tention to designing robust and practical detectors for real-world
usage, with balancing effectiveness and efficiency in mind. (More
discussions can be found in Sec. 5).

In summary, we make the following contributions:

• We conduct a thorough systematic investigation of ML-based
Android malware detection using empirical and qualitative meth-
ods, drawing a holistic picture of the field.

• We develop a general-purpose framework, FrameDroid, to fa-
cilitate the implementation and evaluation of various Android
malware detectors. For comparison in realistic settings, we col-
lect and open-source the largest Android app dataset to date, both
in size and time span. The framework, along with the dataset,
will be released upon acceptance.
• We offer a comprehensive comparative analysis of 12 representa-

tive approaches using FrameDroid, focusing on assessing their
effectiveness, robustness, and efficiency, from which we make
new insights and enhance the understanding of ML-based An-
droid malware detection.

2 MACHINE LEARNING BASED ANDROID
MALWARE DETECTION

Android malware detection involves two fundamental steps: char-
acterizing APKs and identifying malicious patterns. Recent trends
have seen a shift towards using static feature extraction for APK
profiling with reverse engineering [68, 83]. Contrary to approaches
that model app behaviors via execution emulation — a process that
is time-consuming and resource-intensive [27, 31], static analysis
proves to be more efficient and scalable [64]. As such, we exclude
approaches that are inherently slow and hard to scale, e.g., dynamic
analysis and symbolic execution. For malicious pattern identifica-
tion, two kinds of approaches have been proposed: (a) rule-based
and (b) ML-based. The former requires experts to manually for-
mulate detection rules [34, 37] based on malware characteristics.
In contrast, ML models have the capacity to automatically learn
patterns from features [18, 63, 71, 98], which lends itself to scalabil-
ity and adaptability. This has led to the growing popularity of ML
models in Android malware detection [83]. In this paper, we focus
on ML-based approaches that prioritize static feature extraction
for detecting Android malware. Our choice is further validated by
recent developments in the field, as discussed in Sec. 6.

Rather than analyzing each approach individually, our methodol-
ogy is to deconstruct the workflow of ML-based Android malware
detection into three distinct phases: APK characterization (Sec. 2.1),
feature representation (Sec. 2.2), and machine learning modeling
(Sec. 2.3). Following this, we collate and summarize the key tech-
niques employed in each phase by investigating existing approaches,
thereby offering a thorough overview of howMLmodels are applied
in Android malware detection.

2.1 APK Characterization
Input from APK. An APK is a compressed archive that contains
an app’s codebase, resources, and auxiliary files. An APK comprises
several essential types of files and folders [36]. Manifest: Serving
as a descriptor, the manifest provides metadata about the app, de-
tailing elements like the package name, permissions, and hardware
components. Dex: This includes Java classes that are compiled ac-
cording to the Dalvik Executable (DEX) file standard, designed to
run on the Dalvik Virtual Machine (DVM). Library: Within an APK,
native libraries present as shared object files that provide some nec-
essary services for apps (e.g., Webkit), which assists and optimizes

2

Unraveling the Key of Machine Learning Solutions for Android Malware Detection

Are We There Yet? Unraveling the State of Machine Learning based Android Malware Detection CCS ’24, October 14–18, 2024, Salt Lake City, U.S.A.

research community’s growth, all the artifacts (code, data, and logs)
are available at https://anonymous.4open.science/r/FrameDroid.

Manifest M ⇒ 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 | 𝐼𝑛𝑡𝑒𝑛𝑡 |
𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 | 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛

DEX D ⇒ 𝐴𝑃𝐼 𝐶𝑎𝑙𝑙 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝐴𝑃𝐼 𝐶𝑎𝑙𝑙, 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐺𝑟𝑎𝑝ℎ) |
𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒 | 𝑂𝑝𝑐𝑜𝑑𝑒 | 𝐼𝑛𝑡𝑒𝑛𝑡 |
𝐶𝑜𝑑𝑒 𝑆𝑡𝑟𝑖𝑛𝑔

Library L ⇒ 𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒 | 𝑂𝑝𝑐𝑜𝑑𝑒

Resource R ⇒ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Manifest M ⇒ 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 | 𝐼𝑛𝑡𝑒𝑛𝑡 |
𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 | 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛

DEX D ⇒ 𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒 | 𝑂𝑝𝑐𝑜𝑑𝑒 | 𝐼𝑛𝑡𝑒𝑛𝑡 | 𝐶𝑜𝑑𝑒 𝑆𝑡𝑟𝑖𝑛𝑔 |
𝐴𝑃𝐼 𝐶𝑎𝑙𝑙 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝐴𝑃𝐼 𝐶𝑎𝑙𝑙/𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐺𝑟𝑎𝑝ℎ)

Library L ⇒ 𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒 | 𝑂𝑝𝑐𝑜𝑑𝑒

Resource R ⇒ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Figure 1: APK files and their corresponding features.
the app’s execution. Resource: This category contains static assets
and non-compiled resources integral to the app, such as graphics,
layout schematics, and sequences for animations.
APK features. Researchers often deploy static analysis to extract
and distill pertinent features. Manifest and Resource files often ad-
here to well-defined structures, such as XML format. The features
from these files can be efficiently extracted with regular expressions
or dedicated XML parsers. In contrast, the Dex and Library consist
of several binary files. Extracting features from them necessitates a
deep dive with reverse engineering tools. Dex can be disassembled
by Androguard [1] and APKTool [3] into smali code, which is a
more human-readable representation depicting apps’ behaviors. For
the Library, tools like Angr [2] or IDA Pro [7] are helpful in disas-
sembling the native libraries into assembly codes, which facilitates
analysis of the native services utilized by apps.

Figure 1 delineates the relationship between APK file/folder and
the features derived from them. In the subsequent section, these
features are elaborated in detail.
[M] Hardware Component. Android apps necessitate the use of
certain hardware components (e.g., camera) to execute particular
functions (e.g., taking photos). The request for access to specific
hardware components carries distinct security implications, as the
utilization of certain hardware combinations often indicates poten-
tially harmful behavior [18]. For instance, an app utilizing the cam-
era and network connectionmay have the capability tomonitor user
activities and transmit this data to remote servers. To identify such
potential malicious behaviors, several approaches [18, 58, 95, 104]
check the hardware components requested by an app.
[M] Application Component. An APK uses four primary compo-
nents, namely, Activity, Service, Content Provider, and Broadcast
Receiver, to provide different entry points for the system/users to
enter the app. Specifically, Activity provides interfaces for direct
user engagement; Service sustains the app’s background opera-
tions; Broadcast Receiver delivers system-wide events to the app,
and Content Provider manages a shared set of app data. Commonly,
one malware family employs similar component names, such as
SearchService in the DroidKungFu family [8]. Inspired by this, appli-
cation component has been utilized to capture similar fingerprints
in Android malware [18, 58, 95, 104].
[M|D] Intent. As the primary ways of communication among
components, intents connect various Application Components and
delineate the standard operations the app can perform. They are
pivotal in initiating Activities, managing the lifecycle of Services,
and delivering broadcast information to Broadcast Receivers. Mal-
ware frequently monitors these intents to trigger malicious ac-
tions, such as activating pre-configured malicious activity [113].
Approaches [39, 63, 103] attempt to capture these potential mali-
cious behaviors by analyzing corresponding intents.
[M] Permission. Android employs a permission-based mechanism
to regulate application access to sensitive data and restricted actions,

such as accessing contact information or establishing a connection
with a paired device. For an app to carry out particular actions, it
must obtain the requisite permissions at the point of installation
or during runtime [20, 21]. The set of permissions required by an
app can thus offer insights into its intended behaviors. Particularly,
malware often demands permissions that are typically unnecessary
for benign apps, enabling them to execute malicious actions [34].
Consequently, numerous malware detectors [18, 49, 58, 96, 104]
capture the differences to distinguish malware.
[D] API Call Information (API Call and Program Graph). API Call In-
formation, consisting of API calls and their connections, is a widely
utilized feature source in Android malware detection. Android apps
make use of these API calls to access the operating system’s func-
tionality and system resources [78]. For instance, the invocation
of sendTextMessage() suggests that the app is likely to send a text
message. Furthermore, API calls are often connected to form a pro-
gram graph, where each node signifies a method, and each edge
denotes a method invocation [61], illustrating the app’s structural
information [98]. For clarity, we differentiate API Call Information
into two sub-categories: API Call, referring to the individual API
calls, and Program Graph, denoting the relationships among these
API calls. Numerous studies [18, 58, 96] detect sensitive API calls
(e.g., getDeviceId()) to estimate the probability of an app being mali-
cious. In contrast, other solutions [49, 51, 70, 98, 101, 107] venture
deeper, examining the relationships between API calls to capture
an app’s intended behaviors.
[D|L] ByteCode and Opcode. Consistent with previous research [32,
65, 88, 104], we treat both the raw bytecode and the assembly code
derived from the Dex and Library as ByteCode representations.
Specifically, ByteCode is structured in a sequence of instructions,
where each instruction consists of a single Opcode and several
operands. The Opcode denotes a specific operation; for instance,
the invoke Opcode signifies a method invocation. The operands
provide additional information for the Opcode, such as the method
name. In addition, ByteCode and Opcode from the Dex and Library
offer insights into the static execution flows of apps’ Java and
Native codes, providing a comprehensive view of the apps’ intended
behaviors [58]. Recent research attempts to represent Bytecode and
Opcode in various formats, such as image [16, 52, 71, 100] and
text [56, 104, 105], to capture apps’ semantics.
[D] Code String. Apps often embed key information like URLs and
IP addresses as string values within their codebase. These strings
can be traced in the assembly code, tagged either as const-string
or const-string/jumbo. Such strings can provide crucial clues
about potential malicious activities [18]. For instance, malware
often sets up network socket connections to communicate with
remote servers, resulting in the presence of the string socketwithin
the codebase. There have been a number of works [18, 58, 115] using
code strings to identify potential illegal operations.
[R] Resource Information. Apps utilize resources to house tradi-
tional files and static elements, such as bitmaps, layout definitions,
and animation instructions. These resources are generally decou-
pled from the application codebase for ease of maintenance. At-
tackers sometimes embed malicious code within resource files, like
image files, as a tactic to evade detection.

3

Jiahao Liu, Jun Zeng, Fabio Pierazzi, Lorenzo Cavallaro, and Zhenkai Liang

2.2 Feature Representation
APK characterizations offer multi-perspective views of an app’s be-
havior. Before feeding these features into ML models, they must be
encoded into a format that is readily interpretable by these models.
According to APK feature representations, the encoding process can
be organized into four main categories: categorical, image-based,
text-based, and graph-based. Figure 2 illustrates the relationships
between these encoding strategies and specific APK features. In the
subsequent section, we discuss these encoding strategies in detail.
Categorical encoding. In an APK, features like hardware com-
ponents, intents, and code strings are often viewed as categorical
data and can be easily transformed into numerical values. A widely-
encoding strategy is to convert these features into a binary vector,
where each position indicates whether a specific feature exists or
not [18, 38, 51, 62, 63, 96, 108]. On the other hand, another line of
research [58] calculates the frequency of each feature to obtain a
vector of numerical values.
Image-based encoding. Representing specific features as images
and subsequently leveraging image processing techniques is a well-
established approach in Android malware detection. Specifically,
bytecode and opcode sequences are often visualized as images to
describe apps’ behaviors [32, 33, 52, 71, 100]. Notably, DexRay [32]
transforms the app’s bytecode into grey-scale vector images, wherein
each pixel corresponds to a distinct byte. In a similar vein, some
other features are also mapped to images to depict the APK’s char-
acteristics. For instance, Zegzhda et al. [109] combine API calls with
protection levels as an RGB image.
Text-based encoding. Similar to image representation, text-based
encoding is also a widely used strategy in Android malware detec-
tion. Many existing methods [56, 57, 85, 101, 104] have approached
APK features from a textual perspective, employing natural lan-
guage processing (NLP) techniques to amplify detection capability.
For example, by considering API calls as words and their sequences
as sentences, methods presented in [56, 57, 101] utilize word em-
bedding techniques, such as Word2Vec [73], to extract semantic
information included in the API calls.
Graph-based encoding. Recently, graph structure has beenwidely
adopted to represent apps’ semantics [49, 61]. One notable research
direction is to utilize program graphs as the basis to model APK
behaviors [49, 79, 80, 98, 99]. Another avenue aims to build API-
based feature graphs, drawing insights from API calls and their
meta-relationships. An example is to identify whether two API calls
are in the same block, thereby capturing the app’s intended oper-
ations [51, 53]. When represented as a graph, various techniques,
such as DeepWalk [82] and Graph2Vec [75], are employed to extract
apps’s structural information for malware detection.

2.3 Machine Learning Modeling
After encoding these features as numerical vectors, machine learn-
ing models can be leveraged to identify malicious patterns from
them. Following previous studies [83, 112], we categorize the mod-
els employed in Android malware detection into two main cate-
gories: traditional machine learning (TML) and deep learning (DL)
models. TML models, such as linear regression or decision trees,
typically exhibit simpler structures that can explicitly model the
relationship between input and output. As such, these TML models

Are We There Yet? Unraveling the State of the Art ML-based Android Malware Detection CCS ’24, October 14–18, 2024, Salt Lake City, U.S.A.

as datasets, feature extraction toolchains, and learning frameworks.
Our general-purpose framework aims to mitigate these biases and
provide a fair comparison across various approaches for future
research. Specifically, we adopt standardized techniques across all
tasks, including feature extraction and learning frameworks. We
also incorporate many evaluation scenarios, such as training data
sizes, time decay, adversarial attacks, and efficiency, to ensure a
comprehensive and accurate measurement using our crafted dataset.
It is our hope that the framework can serve as a cornerstone for
future work in ML-based Android malware detection.
Complemented approaches..

Manifest M ⇒ 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 | 𝐼𝑛𝑡𝑒𝑛𝑡 |
𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 | 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛

Dex D ⇒ 𝐴𝑃𝐼 𝐶𝑎𝑙𝑙 | 𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒 | 𝑂𝑝𝑐𝑜𝑑𝑒 | 𝐼𝑛𝑡𝑒𝑛𝑡 |
𝐶𝑜𝑑𝑒 𝑆𝑡𝑟𝑖𝑛𝑔 | 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐺𝑟𝑎𝑝ℎ

Library L ⇒ 𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒 | 𝑂𝑝𝑐𝑜𝑑𝑒

Resource R ⇒ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Categorical ⇒ 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 | 𝐴𝑃𝐼 𝐶𝑎𝑙𝑙 | 𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒 |
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 | 𝑂𝑝𝑐𝑜𝑑𝑒 | 𝐶𝑜𝑑𝑒 𝑆𝑡𝑟𝑖𝑛𝑔 |
𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 | 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 | 𝐼𝑛𝑡𝑒𝑛𝑡

Image-based ⇒ 𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒 | 𝑂𝑝𝑐𝑜𝑑𝑒 | 𝐴𝑃𝐼 𝐶𝑎𝑙𝑙
Text-based ⇒ 𝐵𝑦𝑡𝑒𝐶𝑜𝑑𝑒 | 𝑂𝑝𝑐𝑜𝑑𝑒 | 𝐴𝑃𝐼 𝐶𝑎𝑙𝑙
Graph-based ⇒ 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐺𝑟𝑎𝑝ℎ | 𝐴𝑃𝐼 𝐶𝑎𝑙𝑙

Figure 2: The relationships between Feature Representations
and widely used APK Features.

often require domain knowledge to extract features from input data.
In contrast, DL models are characterized by their multiple layers of
neurons, enabling them to capture complex non-linear mappings
from input to output [111]. This capability means that DL models
are less reliant on domain knowledge during the feature extraction.
In this section, we provide a concise introduction to the widely
used models in Android malware detection.
TMLmodels. Given the features extracted based on expert knowl-
edge, TML models are commonly employed to discern patterns
from these features. The Support Vector Machine (SVM) can find
one hyperplane that effectively separates the high-dimension data
points with varying labels. This capability has made it a popular
choice to detect Android malware [18, 41, 51, 87, 101]. K-Nearest
Neighbors (KNN) has also been applied in Android malware de-
tection as seen in studies [14, 97–99]. This algorithm identifies the
nearest neighbors of a given sample and subsequently classifies the
sample based on the majority label of its neighbors. Additionally, as
an ensemble-based learning method, Random Forest (RF) creates a
forest of decision trees, each trained on a random subset of the data.
This approach capitalizes on the strength of multiple decision trees,
making the model more robust and accurate than individual trees.
Such advantages have led to its significant application in malware
detectors [69, 116].
DL models. Recently, DL models have exhibited strong capability
in modeling malware behaviors. As a basic feed-forward neural
network, Multi-Layer Perceptron (MLP), composed of several lay-
ers of neurons, has shown significant effectiveness in detecting
Android malware [28, 58, 63, 70, 85, 114]. The Recurrent Neural
Network (RNN) [72] is a type of neural architecture that can cap-
ture the sequential information of input data. By representing APK
features (e.g., API calls and bytecode) as sequences, several solu-
tions [93, 104, 105] leverage RNN to explore the temporal dependen-
cies embedded in these features. The Convolutional Neural Network
(CNN) [46] is equipped with multiple convolutional and pooling
layers, enabling it to recognize contextual information derived from
low-level features [42]. Reflecting its efficacy, CNN has been exten-
sively employed to extract malicious patterns from image-based
features in Android malware detection [38, 47, 52, 53, 57, 71]. Given
the graph representation of APK features (e.g., program graphs),
Graph Neural Network (GNN) [59] can facilitate malware detec-
tion [35, 40, 49, 69]. This is because GNN can effectively propagate
and aggregate node information along graph edges, thereby captur-
ing the structural information of apps. Utilizing a process of encod-
ing and subsequently decoding input features, Autoencoders (AE)
have the capacity to generate refined data representations, which
makes it a popular choice in detecting malware [63, 106, 117].

In addition, existing research [16, 84, 94] also tries to explore the
potential of other DL models, like generative adversarial network
(GAN) [43] and deep belief network (DBN) [50]. For instance, Amin

4

Unraveling the Key of Machine Learning Solutions for Android Malware Detection

Table 1: A summary of our selected approaches regarding APK Characterization, Feature Representation, and ML Models.
indicates that the APK feature is utilized in feature engineering, while # is the opposite.

Selected
Approach

APK Characterization
Feature

Representation
ML

ModelsHardware
Component

Application
Component Intent Permission API

Call
Byte
Code Opcode Code

String
Program
Graph

Resource
Information

Drebin [18] # # # # Categorical SVM
MamaDroid [69] # # # # # # # # Graph-based RF

Mclaughlin et al. [71] # # # # # # # # # Image-based CNN
HinDroid [51] # # # # # # # # Graph-based SVM

DeepRefiner [104] # # # # Text-based LSTM
Kim et al. [58] # # # Categorical MLP
MalScan [98] # # # # # # # # Graph-based KNN
SDAC [101] # # # # # # # # Categorical SVM

HomDroid [99] # # # # # # # # Categorical KNN
Xmal [96] # # # # # # # # Categorical MLP

RAMDA [63] # # # # # # # Categorical AE
MSDroid [49] # # # # # Graph-based GNN

While multiple ML models may be utilized in individual approaches [69, 98, 99], we only report the model that yields the best effectiveness (e.g., F1-score).

et al. [16] employ the dual-network structure of GAN — one gen-
erates malware samples and the other works to distinguish these
samples — to enhance the malware detection capability.

3 REPRESENTATIVE APPROACH ANALYSIS
To understand the state-of-the-art ML-based Android malware de-
tection, a quantitative analysis of existing literature is indispensable.
With the rapid evolution of this field, hundreds of techniques have
been proposed and achieved remarkable performance in the past
decade. A systematic investigation of relevant works dating back to
2011 is discussed in Sec. 6 to highlight extensive efforts that have
been devoted to Android malware detection.

While an ideal scenario is evaluating as many approaches as
possible to gain a better understanding of the current research
state, conducting an exhaustive examination of each method is
impractical due to the vast amount of existing literature. More-
over, it is important to understand that, despite vast publications in
this area achieving promising results, many of them share similar
techniques (e.g., similar neural networks), and novel solutions are
comparatively fewer. Thus, our analysis strategically focuses on
methods that represent the broad spectrum and depth of advance-
ments in the field. In the subsequent section, we first outline the
principles guiding our selection and provide a summary of the se-
lected approaches. Then, a comparative analysis of these methods
is presented to offer insights into their experimental designs.

3.1 Selection Criteria
Cover various communities. Android malware detection stands
as an interdisciplinary domain, drawing contributions from diverse
communities, including security, software engineering, and ma-
chine learning. Unfortunately, a notable separation is often ob-
served among these communities — the solutions in one community
often only compare with others from the same community, which
hinders potential collaborative advancements. Thus, we want to in-
corporate approaches from a broad range of communities to bridge
the gap and foster greater collaboration.
Explore an extensive spectrum of techniques within the de-
tection pipeline. As identified in Sec. 2, a wide range of technique
combinations exists across different phases of the detection pipeline.

This study aims to explore as many techniques as possible in each
phase, including various mixes of APK features, feature representa-
tions, and ML models. Such a comprehensive investigation enables
us to gain a thorough understanding of the entire workflow of
Android malware detection.
Reflect research progress. Considering the evolving landscape
of this field, where novel methodologies continually emerge, we
prioritize approaches that introduce new techniques or achieve
remarkable performance, such as proposing a new feature repre-
sentation or employing a new learning architecture.
Emphasize representative approaches over specific papers.
Many approaches share similar techniques, commonly extracting
patterns from analogous feature sets (e.g., program graphs) with
similar ML models such as different variants of GNNs. Analyzing
these methods could lead to redundancy and provide limited in-
sights. Therefore, we focus on distinct and representative strategies
that offer more significant contributions to this field.

3.2 Selected Approaches
Adhering to the selection criteria, we identify 12 representative
approaches from hundreds of available solutions to analyze the cur-
rent state of ML-based Android malware detection, as presented in
Table 10. These methods are carefully chosen to represent different
communities — encompassing 7 from security, 3 from software en-
gineering, and 2 from machine learning. This selection guarantees
a broad range of techniques employed in the detection process, in-
cluding 10 APK features, 4 feature representations, and 8MLmodels.
Importantly, the selected approaches stand out either by demon-
strating promising performance or bringing novel techniques to
the discipline, e.g., GNN [49] and CNN [71]. Additionally, we have
made a concerted effort to ensure that the selected solutions are
not variants or combinations of existing ones. For instance, while
several methods [35, 51, 107] utilize heterogeneous information
graphs to model APKs, we spotlight the pioneering approach [51]
that first introduces this concept in this area. In the remaining part
of this section, we introduce these selected approaches, integrating
the information presented in Table 1.
Drebin. As a lightweight Android malware detector, Drebin [18]
first collects APK features, such as permissions, intents, and API

5

Jiahao Liu, Jun Zeng, Fabio Pierazzi, Lorenzo Cavallaro, and Zhenkai Liang

Table 2: A comparative study of our selected approaches based on their experimental setup, efficiency evaluation, robustness
evaluation, artifact release, and toolchain. — denotes the absence of the statistics in the literature. indicates that both feature
encoding and ML modeling were evaluated for efficiency, G# indicates that only ML modeling was evaluated, and # indicates
that the efficiency was not evaluated. Malware Ratio refers to the proportion of malware samples in a testing set.

Selected
Approach

Experimental Setup
Efficiency
Evaluation

Robustness Evaluation
Artifact
Release

Tool
ChainDataset

Size
Time
Span

Train:
Val:Test

Malware
Ratio Evolution Obfuscation Adversarial

Sample
Drebin [18] 129,013 2010-2012 2:0:1 4% ✘ ✘ ✘ ✔ Androguard

MamaDroid [69] 43,940 2010-2016 9:0:1 50% ✔ ✘ ✘ ✔ Soot
Mclaughlin et al. [71] 27,395 — — 50% G# ✘ ✘ ✘ ✔ BackSmali

HinDroid [51] 2,334 2017-2017 4:0:1 60% G# ✘ ✘ ✘ ✘ APKTool
DeepRefiner [104] 110,440 — 8:1:1 57% ✘ ✔ ✔ ✘ APKTool
Kim et al. [58] 41,260 — 3:1:1 50% G# ✘ ✔ ✘ ✘ APKTool
MalScan [98] 30,715 2011-2018 9:0:1 50% ✔ ✘ ✔ ✔ Androguard
SDAC [101] 70,142 2011-2016 8:0:2 50% ✔ ✔ ✘ ✘ FlowDroid

HomDroid [99] 8,198 — 9:0:1 40% ✘ ✘ ✘ ✘ Androguard
Xmal [96] 35,690 — 7:0:3 43% # ✘ ✘ ✘ ✔ Androguard

RAMDA [63] 58,483 — 19:0:1 50% # ✘ ✘ ✔ ✔ APKTool
MSDroid [49] 81,790 2010-2015 4:0:1 37% # ✔ ✔ ✘ ✔ Androguard

calls, using static analysis. These features are then converted into a
binary vector to signify their existence or absence. From the data,
an SVM model is trained to detect malware.
MamaDroid. MamaDroid [69] pioneers the use of Markov chains
to depict apps’ behaviors. With the Markov chain constructed from
the sequence of API calls, the transition probabilities between these
calls are computed to serve as features. These features then inform
an RF model to detect Android malware.
Mclaughlin et al. This technique [71] presents the leading edge
in image-based Android malware detection approaches. By trans-
forming opcode sequences into images via one-hot encoding, it
leverages a CNN model to distinguish malware from benign apps.
HinDroid. Hou et al. [51] introduce a novel approach by repre-
senting API calls as a structured heterogeneous information graph.
This approach accounts for the inter-relationships among API calls,
such as their presence in the same code block. It then captures apps’
semantics with meta-path techniques [89]. A multi-kernel SVM is
further applied to recognize malicious patterns.
DeepRefiner. DeepRefiner [104] designs a two-layer malware de-
tection system. Initially, it feeds features like hardware components,
permissions, and resources into an MLP to detect most malware.
For ambiguous cases, it further interprets APK bytecodes as text
sequences and employs a long short-term memory (LSTM) model
to capture the method-level and application-level semantics.
Kim et al. Kim et al. [58] innovatively use multi-modal learning
to detect malware, aggregating various features, such as intent and
API calls. Distinct MLPs are initially utilized to process individual
features independently. Subsequently, a unified MLP integrates the
outputs from the preceding models, offering a consolidated decision
on Android malware identification.
MalScan. This study [98] treats app program graphs as social
networks, where API calls are treated as nodes, and the relationships
between them are presented as edges. The system evaluates the
centrality of sensitive API calls to derive features and then feeds
them into a KNN model to detect malware.

SDAC. The algorithm [101] attempts to cluster API calls based on
their contextual information extracted by Word2Vec [73] from API
call sequences. These resulting clusters act as features to represent
APKs. An SVM model is then used to capture malicious patterns.
HomDroid. The method in [99] zeroes in the suspicious compo-
nents of malware by calculating the homophily within its program
graph, paving a novel path for malware detection. From the ma-
licious subgraph, it derives two key features: (1) the presence of
sensitive API calls, and (2) the number of sensitive triads. These
features are then fed into a KNN model to detect malware.
Xmal. Xmal [96] utilizes MLPs to distill information from ex-
tracted API calls and permissions for Android malware detection.
It further integrates an attention mechanism to highlight the most
informative features. This attention-based MLP not only achieves
promising results but also offers an interpretation of the model.
RAMDA. This detector [63] is the state-of-the-art approach that
employs Autoencoder to derive a resilient representation of APKs
with features such as API calls and intents. Then, the representation
is fed into an MLP to detect Android malware.
MSDroid. MSDroid [49] is the cutting-edge in utilizing GNN to
detect Android malware. Initially, it breaks down the program graph
into subgraphs rooted with sensitive API calls. Then, it leverages a
GNN to capture essential information for malware detection.

3.3 Comparative Study
Comprehensively and comparatively analyzing these representa-
tive approaches from various angles provides an insightful lens for
understanding the current advancements in ML-based Android mal-
ware detection. In this section, we conduct a comparative review
of the selected approaches, focusing on three critical dimensions:
(a) Effectiveness refers to the ability of an approach to accurately
identify malware under various circumstances, such as different
dataset sizes and goodware-to-malware ratios; (b) Robustness as-
sesses the methods’ resilience, especially in response to challenges
like malware evolution; (c) Efficiency reflects the computational
overhead incurred during APK processing and ML modeling.

6

Unraveling the Key of Machine Learning Solutions for Android Malware Detection

Effectiveness. Effectiveness is the most important criterion for
any detection technique, and all the selected approaches evalu-
ate this aspect. However, the experimental settings — dataset size,
time span, dataset partition, and malware ratio — vary dramatically
across these approaches, as shown in Table 2, making direct compar-
isons challenging. It is well-established that a positive correlation
exists between the training data size and ML model performance.
The training data size in these approaches ranges from 2,334 [51]
to 129,013 [18], making it difficult to compare their effectiveness.
The datasets’ temporal span further complicates the evaluation,
as Android malware evolves over time and the features extracted
from APKs change accordingly. Another point is the absence of a
validation set [49, 63, 96]. This oversight is alarming, raising con-
cerns about potential over-fitting and over-optimistic performance
indicators. In the wild, malware generally accounts for around 10%
of cases [81]. However, this ratio in testing datasets significantly
varies across studies (e.g., from 4% [18] to 60% [51]), which makes
it difficult to reveal the true effectiveness of these approaches.
Robustness. Android malware detection faces three major chal-
lenges: malware evolution, obfuscation, and adversarial attacks [30,
81]. Specifically, Android malware detectors routinely operate in
hostile and dynamic contexts [22], wheremalware constantly evolves
to evade detection. Also, obfuscation has been widely adopted by at-
tackers to conceal their malicious operations [17]. Additionally, the
inherent susceptibility of ML models to adversarial attacks [19, 61]
complicates the detection process. In our estimation of the robust-
ness of the selected approaches, as detailed in Table 2, we observe
that these selected approaches frequently miss one or more of the
real-world challenges. This omission complicates the assessment
of their true effectiveness in real-world deployments.
Efficiency. To measure a new technique, the importance of effi-
ciency stands parallel to effectiveness. As Android apps grow in size
and complexity, the time and computational resources required for
APK processing andMLmodeling could substantially rise. However,
as Table 2 shows, not every approach evaluates the efficiency of
these two parts. Additionally, understanding how efficiency shifts
when dealing with APKs at various times is vital to ensure detec-
tors’ sustainability and long-term utility; unfortunately, this is not
considered by any of the selected approaches.
Other considerations. Table 2 additionally provides information
on whether the selected approaches make their artifacts available
and the specific toolchains they utilize. We note that nearly half of
these approaches do not release their artifacts, posing significant
challenges to reproducibility. Furthermore, the toolchains used by
these approaches are diverse, such as Androguard [1], APKTool [3],
and BackSmali [4]. Such heterogeneity in toolchain selection com-
plicates the direct comparison of these methods’ effectiveness, as
different toolchains can substantially impact the outcomes. Com-
bining with the aforementioned analysis, there is a pressing need
for a general-purpose framework that not only unifies the develop-
ment process but also supports multi-aspect evaluation scenarios
for ML-based Android malware detectors.

4 QUANTITATIVE ANALYSIS
One of our primary contributions is conducting a comprehensive
and quantitative analysis of the selected representative approaches.

API call PermissionCode String

1

Manifest,
DEX,
Library,
Resource

Database Preprocessor

Intent, Opcode,
Permission,
API Call,
Code String, …

ML Model

SVM, MLP,
AE, GNN,
KNN, RF,
LSTM,…

Detector

Drebin,
MSDroid,
MalScan,
SDAC, …

Metrics

AUT, …

Data Configuration
B-to-M Ratio, …

Adversarial attack
JSMA, RI, …

APK Obfuscator

Rename Identifier, …

Configurable Evaluation Settings

Figure 3: The architecture of FrameDroid.

This analysis aims to estimate and unravel the effects of various real-
world scenarios, such as different data sizes, goodware-to-malware
ratios, and the presence of adversarial attacks, on the performance
of these methods. Such experiments offer valuable insights into the
current state of ML-based Android malware detection. Specifically,
within this section, we re-implement these 12 approaches utiliz-
ing our general-purpose framework, FrameDroid (Sec. 4.1). We
then assess their effectiveness (Sec. 4.3), robustness (Sec. 4.4), and
efficiency (Sec. 4.5) on our crafted dataset — the largest to date in
terms of both time and size (Sec. 4.2).

4.1 FrameDroid
Figure 3 illustrates the architecture of FrameDroid. The procedure
initiates with a collection of Android apps, from which a set of
widely recognized features is extracted and stored in a feature
database. These features are then processed by a preprocessor, being
transformed into a numerical format suitable for ML models. After
that, an ML model is trained and evaluated for detecting malware.
FrameDroid is also equipped with adaptable experimental settings
to support a wide range of real-world scenarios.

FrameDroid consists of three key modules: feature database, pre-
processor, and ML model. Feature database organizes the extracted
features categorically, including Manifest, ProgramGraph, Disas-
sembledCode, and SharedLibrary (details are in A.1), which can
be easily extended to incorporate new features. The role of pre-
processor is to retrieve and encode features before feeding them
into ML model. This module can be tailored to support different
detectors, granting flexibility in feature selection and usage. ML
model integrates widely used ML models, e.g., RF, SVM, KNN, MLP,
LSTM, CNN, GNN, and AE. It also supports model customization —
for example, one can easily add new neural networks of different
architectures. To develop a new detector, one only needs to cus-
tomize preprocessor to select corresponding features from feature
database and feed them into ML model.

FrameDroid provides configurable experimental settings to sup-
port different real-world scenarios. Parameters, such as goodware-
to-malware ratios and training data sizes, are all adjustable. Dif-
ferent configurations enable the creation of diverse evaluation sce-
narios. FrameDroid also includes an APK obfuscator [17], which
is instrumental in producing different types of obfuscated sam-
ples, e.g., code modification and identifier renaming. Moreover, this
framework incorporates an adversarial samples generation mecha-
nism from AndroidHIV [29], allowing the assessment of models’
resilience to adversarial attacks.

Utilizing FrameDroid, we have re-implemented and conducted
experimental analysis on the 12 representative approaches, as elab-
orated in Sec. 3. Detailed information regarding the implementation
of these approaches can be found in A.3.

7

Jiahao Liu, Jun Zeng, Fabio Pierazzi, Lorenzo Cavallaro, and Zhenkai Liang

Table 3: Evaluation Dataset Statistics. This dataset consists of 221,310 Android applications, i.e., 22,870 malicious and 198,440
benign apps, spanning ten years from 2011 to 2020. The unit used for measuring APK size is megabytes (MB).

Apps
Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

Malicious(M) 2,085 2,137 2,182 2,346 2,369 2,390 2,389 2,326 2,345 2,301 22,870
Benign(B) 17,878 18,687 18,631 20,142 20,643 21,292 21,006 20,099 20,260 19,802 198,440
M+B 19,963 20,824 20,813 22,488 23,012 23,682 23,395 22,425 22,605 22,103 221,310
M/(M+B) 10.4% 10.3% 10.5% 10.4% 10.3% 10.1% 10.2% 10.4% 10.4% 10.4% 10.3%
Average Size 2.26 3.58 5.21 6.91 9.52 12.26 16.24 16.62 17.27 16.65 10.86

Table 4: Data distribution of four sub-datasets. M/N indicates
M benign and N malicious apps.

Training Validation Testing Alias

14,400/1,600 1,800/200 1,800/200 ❶

1,000/1,000 1,000/1,000 ❷

8,000/8,000 1,800/200 1,800/200 ❸

1,000/1,000 1,000/1,000 ❹

4.2 Dataset
For an evaluation that mirrors real-world scenarios and supports a
multi-dimensional assessment, it is crucial that the dataset adheres
to the following criteria [81]. Market Diversity: Since Android apps
are distributed across various app stores, it is better to sample apps
from multiple platforms to ensure comprehensive representation.
Grayware: Owing to the uncertain nature of grayware, incorporat-
ing it might skew the results. To prevent potential biases which
could misrepresent a method’s performance, grayware should be
excluded. Time Distribution: To study malware evolution [24, 60] in
Androidmalware detection, the dataset should contain samples over
a long time range. Malware Ratio: To mimic actual conditions, the
dataset should have a malware ratio that aligns with the estimated
10% observed in the wild [81].

Several public repositories, such as AndroZoo [15], Drebin [18],
andAMD [66], provide access to collections of Android apps. Among
these, Androzoo stands out as a continually expanding repository,
aggregating apps from various platforms, like Google Play, Play-
Drone, VirusShare, and AppChina. In contrast, other repositories
typically consist of apps from fixed periods and are sourced from a
relatively smaller number of platforms. Consequently, we choose
to collect our dataset from AndroZoo, which ensures our evalua-
tion is more comprehensive and representative. During the selec-
tion process, we use the positive anti-virus alerts from VirusTo-
tal [13], denoted as 𝑝 , to filter out grayware. Following previous
studies [74, 81], apps with 𝑝 ≥ 4 are categorized as malicious, while
those with 𝑝 = 0 are considered benign. The dataset covers apps re-
leased between 2011 and 2020. We further ensure that the malware
ratio for each month approximates the 10% target, aligning with
Malware Ratio. We have successfully obtained a dataset of 221,310
Android apps, i.e., 22,870 malicious and 198,440 benign apps, which
is summarized in Table 3.
Settings. To support certain evaluation scenarios, we also con-
struct several sub-datasets from the aforementioned main dataset.
For each sub-dataset, apps are randomly sampled to form training,
validation, and testing sets. Table 4 shows the data distribution
of these four sub-datasets. Importantly, we prioritize the apps in

Table 5: The effectiveness of these approaches across varied
goodware-to-malware ratios in training and testing sets.

Selected
Approach

B:M=9:1 in Tr (❶ - ❷) B:M=1:1 in Tr (❸ - ❹)
B:M=9:1 in Ts B:M=1:1 in Ts B:M=9:1 in Ts B:M=1:1 in Ts
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Drebin 0.722 0.948 0.791 0.823 0.650 0.901 0.918 0.917
MamaDroid 0.661 0.945 0.693 0.763 0.650 0.902 0.895 0.897

Mclaughlin et al. 0.714 0.946 0.799 0.828 0.682 0.924 0.916 0.916
HinDroid 0.731 0.943 0.819 0.842 0.701 0.924 0.925 0.925

DeepRefiner 0.657 0.932 0.776 0.809 0.667 0.918 0.881 0.881
Kim et al. 0.782 0.952 0.907 0.912 0.753 0.941 0.938 0.937
MalScan 0.684 0.939 0.793 0.823 0.587 0.877 0.880 0.880
SDAC 0.522 0.916 0.627 0.720 0.524 0.850 0.845 0.844

HomDroid 0.734 0.949 0.816 0.841 0.701 0.925 0.912 0.914
Xmal 0.698 0.942 0.826 0.847 0.674 0.916 0.923 0.924

RAMDA 0.636 0.905 0.841 0.852 0.510 0.829 0.871 0.865
MSDroid 0.648 0.919 0.834 0.828 0.522 0.853 0.867 0.858

Tr denotes the training set, and Ts represents the testing set. ❶ - ❹ correspond to the
four scenarios in Table 4. The top 3 results for each scenario are highlighted in bold.

training, validation, and testing sets from different years to en-
sure comprehensive representation. For instance, for ❶, each year
contributes 1440 benign and 160 malicious apps for training, 180 be-
nign and 20 malicious apps for validation, and the same for testing.
Duplicate apps are also avoided across these sets.

4.3 Effectiveness
We evaluate the selectedmethods under various experimental condi-
tions. Specifically, we investigate how various factors — goodware-
to-malware ratio in training and testing sets, training set size, and
APK feature — affect the effectiveness of these approaches.
Goodware-to-malware ratio. The effectiveness of ML-based mal-
ware detectors is heavily influenced by the distribution of malware
in the training and testing sets. We aim to investigate how this ratio
affects the selected approaches. Particularly, we consider two ratios,
i.e., 10%, and 50%, in both training and testing sets. These choices
are inspired by the estimated 10% observed in the wild [81] and the
50% widely adopted in previous studies [63, 69, 98]. The ❶ - ❹ in
Table 4 present these four scenarios in our consideration.

Table 5 summarizes the results in terms of F1-score and Accuracy.
The results are arranged sequentially from left to right, correspond-
ing to scenarios ❶ through ❹. We observe that all the approaches
produce promising results under scenario ❹, characterized by a 1:1
goodware-to-malware ratio in both training and testing sets. This
demonstrates that these approaches can effectively detect malware
under ideal conditions, where goodware and malware are balanced.
However, when the malware ratio in the testing set is adjusted to
10% (❶ and ❸), there is a marked decline in the F1-score across all
methods. It is evident that most of these approaches suffer from

8

Unraveling the Key of Machine Learning Solutions for Android Malware Detection

Drebin

MamaDroid

Mclaughlin et al.

HinDroid

DeepRefiner

Kim et al.
MalScan

SDAC

HomDroid
Xmal

RAMDA
MSDroid

0.0

0.2

0.4

0.6

0.8

1.0
50% Training data 10% Training data

Figure 4: Effectiveness of the selected approaches using dif-
ferent sizes of training data.
performance degradation when faced with a realistic goodware-to-
malware ratio. In addition, upon analyzing the top three results, we
find that DL-based approaches appear to outperform traditional ML-
based methods when the malware ratio is 50% (❷ and ❹) — almost
all the top three results are achieved by DL-based methods. While
in more realistic scenarios (❶ and ❸), DL-based approaches do not
exhibit a marked advantage over traditional ML-based methods.
Training set size. The training set’s size is a critical determinant
of the effectiveness of ML classifiers [86]. However, securing a large,
high-quality training set is often infeasible due to the significant
costs of data collection and labeling. To study the impact of training
set size on malware detection, we down-sample the training set in
Table 4(❶) to 50% and 10% of its initial volume, while ensuring that
the malware ratio remains consistent at 10%.

Figure 4 shows how these detectors’ performance changes when
the training set size is reduced. To offer a clearer view, we normalize
the F1-scores of these methods based on their performance obtained
with the entire original dataset. The detailed results and the nor-
malization process are provided in A.6. The figure clearly shows
that reducing the training set size leads to performance degradation
across all selected approaches, underscoring the principle that more
data enhances capturing malicious patterns. Interestingly, Mclaugh-
lin et al. [71] and DeepRefiner [104] display a greater sensitivity to
training set size compared to others. One possible explanation is
that, unlike other methods that heuristically select features from
apps, these two approaches take original apps’ bytecode as input,
requiring more data to learn patterns from raw data as opposed to
hand-crafted features. This finding highlights the importance of fea-
ture selection in ML-based Android malware detection, especially
in scenarios where data availability is limited.
APK feature. ML-based Android malware detectors often lever-
age diverse features to enhance detection performance [18, 58, 63].
The underlying reason is that each feature uniquely contributes
to characterizing APKs. One question naturally arises: Does the
incorporation of more features necessarily enhance a detector’s
performance? To investigate this, we systematically remove indi-
vidual features from the original feature set to assess the resulting
model performance. For this experiment, it is essential that the
feature sets of the chosen approaches are decomposable, allowing
the sequential removal of individual features. Accordingly, we spot-
light Drebin [18], Kim et al. [58], Xmal [96], and RAMDA [63] as
exemplary approaches, owing to their decomposable feature sets.
We exclude certain methods whose features are highly intertwined
from this study. For instance, MamaDroid [69] and MalScan [98]

Table 6: The impact of APK features on the effectiveness of
Drebin, Kim et al., Xmal, and RAMDA.

Feature
Combination

Drebin Kim et al. Xmal RAMDA
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Original 0.722 0.948 0.726 0.944 0.698 0.942 0.636 0.905
w/o hardware 0.717 0.947 0.728 0.945 N/A N/A N/A N/A
w/o app-intent 0.622 0.936 0.776 0.952 N/A N/A 0.428 0.845
w/o permission 0.698 0.945 0.692 0.939 0.566 0.926 0.526 0.882
w/o api call 0.691 0.944 0.699 0.942 0.639 0.930 0.482 0.880
w/o opcode N/A N/A 0.724 0.942 N/A N/A N/A N/A
w/o code string 0.702 0.944 0.725 0.945 N/A N/A N/A N/A

w/o means without. N/A indicates that the feature are not used in the original work.

rely on specific API calls to extract features from program graphs,
making it challenging to remove individual features — if API calls
are removed, the graph features will also be removed. It is worth
noting that the selected methods are representative to conduct this
experiment because they cover most features and various models.

Table 6 presents the outcomes of this experiment. From the table,
we observe that Drebin [18], Xmal [96], and RAMDA [63] has a
performance degradation when some features are removed. Inter-
estingly, Kim et al. [58] deviates from this trend. In fact, even when
some features are omitted, its performance exceeds the original
results. These two observations underscore that each feature has a
distinct contribution to the overall effectiveness of a malware de-
tector. While in some cases, merely expanding the feature set does
not guarantee an enhanced performance. This phenomenon under-
scores the importance of evaluating and justifying the inclusion of
each feature in a malware detector.

4.4 Robustness against real-world scenarios
As discussed in Sec. 3, the real-world scenarios —malware evolution,
obfuscation, and adversarial attacks — are the main challenges
for ML-based malware detectors. While previous works [48, 61,
81] have started investigating detectors’ robustness, they often
focus on one or two parts of these scenarios. Thus, a thorough
assessment of ML-based malware detectors’ robustness against a
wider range of scenarios is still lacking. To bridge the gap, this
section comprehensively re-examines and evaluates the robustness
of the selected approaches, offering insights into the current state
of ML-based malware detection.
Evolution. Android malware is continuously evolving, and the
effectiveness of malware detectors can be affected by this evolu-
tion [55, 110]. To quantify the impact of malware evolution on
malware detectors,, we utilize the 𝐴𝑈𝑇 (𝑓 , 𝑁) metric as introduced
by [81], where 𝑓 denotes the F1-score of a given approach, and 𝑁

represents the evolution period. We set 𝑁 to 3, 6, 9, 12, 15, 18, 21,
and 24 months in this experiment (see A.4 for details). This metric
ranges in (0, 1), where higher values indicate greater resilience of an
approach to malware evolution. In the study, we adopt a rolling al-
gorithm over the data from 2011 to 2020 to calculate the𝐴𝑈𝑇 (𝑓 , 𝑁)
(see A.5 for the algorithm). Specifically, for each year, from 2011
to 2020, we first partition the data into training, validation, and
testing sets with 8:1:1. Next, we train models with the training
data, validate to get the best model, and evaluate it on the test set
to get the F1-score as 𝐴𝑈𝑇 (𝐹1, 0). Then the model is applied to
test data in the next 𝑁 months, yielding 𝑁 F1-scores. These scores
are further used to calculate the 𝐴𝑈𝑇 (𝐹1, 𝑁). By averaging the

9

Jiahao Liu, Jun Zeng, Fabio Pierazzi, Lorenzo Cavallaro, and Zhenkai Liang

0.0

0.2

0.4

0.6

0.8

1.0
1.00

0.91
0.85

0.790.740.700.680.650.62

Drebin
1.00

0.77
0.69

0.60
0.540.520.480.430.40

MamaDroid
1.00

0.86
0.80

0.72
0.650.610.580.540.50

Mclaughlin et al.
1.00

0.690.670.63
0.58

0.530.510.490.48

HinDroid
1.00

0.830.79
0.71

0.640.620.580.550.52

DeepRefiner
1.00

0.920.91
0.85

0.790.740.720.680.64

Kim et al.

0 3 6 9 12 15 18 21 24
0.0

0.2

0.4

0.6

0.8

1.0
1.00

0.880.86
0.790.740.710.680.650.61

MalScan

0 3 6 9 12 15 18 21 24

1.00

0.83
0.74

0.67
0.610.590.550.520.49

SDAC

0 3 6 9 12 15 18 21 24

1.00

0.850.820.77
0.720.680.640.600.56

HomDroid

0 3 6 9 12 15 18 21 24

1.00
0.92

0.87
0.800.760.730.700.670.63

Xmal

0 3 6 9 12 15 18 21 24

1.00
0.93

0.880.83
0.780.740.720.690.66

RAMDA

0 3 6 9 12 15 18 21 24

1.00
0.920.90

0.830.790.780.740.700.66

MSDroid

Figure 5: The performance of the selected techniques against diverse malware evolution periods. Columns display the absolute
values of 𝐴𝑈𝑇 (𝐹1, 𝑁). The line charts depict the relative percentage of 𝐴𝑈𝑇 (𝐹1, 𝑁) against 𝐴𝑈𝑇 (𝐹1, 0).

Table 7: The F-score of the selected approaches under differ-
ent obfuscation strategies [17].

Approach

Obfuscation Without
Obfus.

Rename
Identifier

Encrypt
Resource

Modify
Code

Reflect
Invocation

Drebin 0.732 0.702 0.701 0.732 0.732
MamaDroid 0.653 0.274 0.449 0.150 0.461

Mclaughlin et al. 0.750 0.699 0.722 0.175 0.727
HinDroid 0.750 0.750 0.741 0.750 0.735

DeepRefiner 0.692 0.618 0.658 0.297 0.612
Kim et al. 0.795 0.795 0.611 0.795 0.798
MalScan 0.675 0.675 0.675 0.681 0.687
SDAC 0.563 0.538 0.552 0.495 0.552

HomDroid 0.729 0.751 0.706 0.728 0.739
Xmal 0.727 0.727 0.727 0.727 0.727

RAMDA 0.635 0.635 0.635 0.635 0.635
MSDroid 0.672 0.675 0.610 0.356 0.494

𝐴𝑈𝑇 (𝐹1, 𝑁) values sourced from distinct yearly datasets for each
method, we chart the outcomes in Figure 5.

It is clear that malware evolution affects the effectiveness of these
selected techniques. Notably, most DL approaches display superior
resilience against malware evolution compared to their traditional
ML counterparts. Specifically, the majority of DL techniques retain
about 60% effectiveness even after two years. In contrast, many
traditional ML methods see their F1-scores reduced to 50% within
the same time span. This disparity can likely be traced back to the
inherent capability of DL methods to discern intricate patterns,
which traditional ML might miss. Interestingly, certain DL-based
methods, e.g., Mclaughlin et al. [71] and DeepRefiner [104], do not
fare as well over time. This could be attributed to their reliance
on apps’ original bytecode as input, which may complicate the
malware pattern learning process.
Obfuscation. As a common practice in Android development,
obfuscation is often utilized to safeguard developers’ intellectual
property and deter reverse engineering attempts [41]. However, as
obfuscation typically involves altering an app’s code, it can also
affect the effectiveness of malware detectors [49]. This part explores
the influences of popular obfuscation techniques, i.e., renaming
identifiers, encrypting resources, modifying code, and invoking
reflection [17], on the selected approaches.

In this study, we apply each of the obfuscation strategies dis-
cussed earlier to the testing set outlined in Table 4(❶). Only the
apps that can be successfully obfuscated by all the strategies are
included in the obfuscated testing set, which contains 1,303 apps.

Table 8: The robustness of our selected approaches on various
adversarial attacks.

Selected
Approach

ASR APR Selected
Approach

ASR APR
JSMA RI JSMA RI

Drebin 1.000 0.237 0.001 SDAC 1.000 0.146 0.001
MamaDroid 0.972 0.187 0.021 HomDroid 0.979 0.303 0.324
HinDroid 1.000 0.068 0.004 Xmal 1.000 0.142 0.013
Kim et al. 1.000 0.000 0.004 RAMDA 0.931 0.300 0.023
MalScan 1.000 0.788 0.001 MSDroid 1.000 0.022 0.013

The effectiveness of the selected approaches, previously trained
on the original training set, is then evaluated on this obfuscated
testing set. Table 7 summarizes corresponding results. Clearly, most
methods exhibit a decrease in effectiveness when subjected to ob-
fuscation. More specifically, the impact of obfuscation on detectors’
effectiveness significantly depends on how the detectors utilize APK
features. For instance, Xmal [96] and RAMDA [63] demonstrate
greater robustness against obfuscation. This resilience is mainly due
to the fact that the employed obfuscation techniques do not change
their used features. In contrast, detectors like MamaDroid [69] and
MSDroid [49], relying on the code structure of the APK, tend to be
more susceptible to the code modification strategy.
Adversarial attack. WhileML-based detectors have shown promis-
ing results, their susceptibility to adversarial samples remains a
concern [44, 54]. We now utilize the dataset from Table 4(❶) to
explore the impact of adversarial attacks on the performance of the
selected approaches. Mclaughlin et al. [71] and DeepRefiner [104]
are excluded since they truncate features at a certain size, making
them easily bypassable. Thus, attackers could embed malicious code
in the ignored segments to evade detection.

To better investigate the impact of adversarial attacks, we em-
ploy two basic strategies: Jacobian Saliency Map Attack (JSMA)
and Randomized Input (RI). Utilizing the JSMA approach, we first
train a substitute model with the training set, followed by apply-
ing JSMA on the substitute model to generate adversarial samples
in the testing set. For the RI technique, we randomly change a
certain percentage of features in the testing set to produce adver-
sarial examples. Importantly, when crafting adversarial samples,
we follow [29, 61] to ensure the feature modifications are domain-
mappable and can be repackaged to APKs. Using Drebin as an
example, we restrict our modifications to changing feature vec-
tors from 0 to 1, keeping apps’ core functionalities unaffected. To

10

Unraveling the Key of Machine Learning Solutions for Android Malware Detection

Table 9: The efficiency of selected approaches across datasets from different years, covering training and testing phases.
Drebin MamaDroid Mclaughlin et al. HinDroid DeepRefiner Kim et al. MalScan SDAC HomDroid Xmal RAMDA MSDroid

Tr
ai
ni
ng

2011 15.11s 1.90s 128m22s 2m19s 369m18s 98m47s 1m14s 84m47s 2.00s 1m15s 1m6s 20m19s
2012 20.88s 1.94s 97m01s 2m18s 359m35s 92m47s 1m18s 89m05s 2.04s 1m25s 1m11s 37m54s
2013 22.37s 2.12s 172m20s 2m13s 477m18s 115m40s 1m24s 115m35s 2.04s 50.36s 1m06s 40m11s
2014 32.49s 2.46s 128m13s 2m40s 629m26s 104m03s 1m33s 132m55s 2.20s 2m20s 1m17s 42m07s
2015 26.40s 2.60s 411m03s 2m44s 730m41s 115m27s 1m38s 250m07s 2.22s 2m10s 1m20s 42m52s
2016 32.62s 2.99s 234m19s 2m51s 867m25s 135m50s 1m42s 470m38s 2.26s 1m05s 1m19s 142m23s
2017 22.36s 2.75s 192m41s 2m28s 997m04s 145m24s 1m37s 296m05s 2.22s 1m54s 1m20s 47m22s
2018 19.97s 2.91s 227m48s 2m36s 933m12s 128m32s 1m34s 716m43s 2.21s 1m19s 1m21s 155m50s
2019 26.83s 3.03s 514m18s 2m34s 968m50s 185m43s 1m32s 918m09s 2.22s 1m34s 1m18s 130m41s
2020 22.87s 2.69s 771m44s 2m22s 1064m30s 148m08s 1m29s 867m55s 2.17s 2m09s 1m12s 93m08s

Te
st
in
g

2011 0.98s 0.06s 16.03s 29.82s 42.04s 0.62s 18.02s 54.43s 1.20s 0.32s 0.07s 4.33s
2012 1.36s 0.06s 16.94s 30.40s 45.50s 0.89s 22.23s 53.97s 1.30s 0.32s 0.07s 6.15s
2013 1.48s 0.06s 16.25s 31.53s 50.36s 1.10s 19.27s 1m21s 1.22s 0.34s 0.07s 7.14s
2014 1.53s 0.06s 24.69s 33.10s 59.22s 1.11s 24.83s 1m51s 1.36s 0.32s 0.09s 11.29s
2015 1.73s 0.06s 28.63s 34.95s 1m12s 0.97s 23.59s 2m54s 1.41s 0.39s 0.07s 10.92s
2016 2.16s 0.06s 40.04s 36.50s 1m23s 1.19s 23.92s 3m37s 1.54s 0.33s 0.08s 18.72s
2017 1.46s 0.06s 34.05s 35.25s 1m12s 0.92s 26.19s 4m16s 1.50s 0.31s 0.09s 17.96s
2018 1.28s 0.06s 36.39s 35.17s 1m18s 0.89s 22.67s 6m21s 1.28s 0.32s 0.09s 17.96s
2019 1.74s 0.06s 57.58s 34.93s 1m33s 1.18s 24.43s 8m55s 1.45s 0.33s 0.09s 21.14s
2020 1.40s 0.06s 1m12s 33.90s 1m49s 0.91s 23.62s 8m27s 1.52s 0.41s 0.07s 19.54s

measure the robustness of these approaches against adversarial at-
tacks, we use two metrics from [61]: Adversarial Success Rate (ASR)
and Adversarial Perturbation Ratio (APR), with their definitions
provided in A.4. Both metrics range (0, 1). A higher ASR indicates
increased vulnerability to adversarial attacks, while a higher APR
suggests greater robustness against such attacks.

By analyzing Table 8, we note that JSMA yields an average ASR
of 98.8% across the evaluated approaches, indicating their vulnera-
bility to such basic adversarial attacks. The employed strategies are
less effective onMamaDroid [69], HomDroid [99], and RAMDA [63]
compared to others. The robustness in MamaDroid and HomDroid
could be linked to their unique abstraction of APKs’ graph struc-
tures. Interestingly, MamaDroid, HomDroid, and MalScan all utilize
API calls and program graphs; the former two methods demon-
strate greater resilience. The key difference lies in their handling of
program graphs — MamaDroid abstracts these graphs using fam-
ily and package names, and HomDroid employs social network
triads for abstraction, in contrast to MalScan’s direct use of API
calls and program graphs. Additionally, RAMDA’s resilience can be
attributed to its customized autoencoder, which learns compressed
representations of benign apps, making it more defensive to adver-
sarial perturbations. These findings suggest that abstracting feature
representations or augmenting models’ defensive capabilities could
improve malware detectors’ robustness to adversarial attacks.

4.5 Efficiency
Efficiency often serves as a primary indicator to measure scalability
and applicability. In this section, we scrutinize the performance of
the selected methods across datasets from different years, focusing
on both feature transformation (i.e., retrieving and encoding) and
ML modeling. All experiments are performed on a server equipped
with 32-core CPUs operating at 2.10 GHz, 251 GB of physical mem-
ory, and two GPUs, each with 32 GB of memory.
Feature transformation. With the pre-extracted features in our
database, we assess the time efficiency of the selected methods in
retrieving and encoding their required features. Note that we utilize
16 processes to transform the features concurrently.

2011 2012 2013 2014 2015 2016 2017 2018 2019 20200

20

40

60

80

100

120

140

160

180

201220142016201820200

2

4

6Mclaughlin et al.
Drebin
RAMDA
Xmal
MamaDroid
DeepRefiner
MalScan
Kim et al.
HinDroid
MSDroid
HomDroid
SDAC

Figure 6: The efficiency of feature transformation of the se-
lected approaches. The x-axis shows the dataset year, and the
y-axis indicates the utilized time in hours.

Figure 6 depicts the time taken by these approaches for feature
transformation. As time advances, a noticeable increase in the time
required for processing is evident, which aligns with the expo-
nential growth in the size and complexity of APKs over the years.
Notably, there is a significant variance in the time consumption
among different approaches. This is within our expectation since
various methods employ distinct features and encoding techniques.
For instance, SDAC [101] consumes the most time due to its require-
ment to query the program graph recursively for API call sequence
generation. While methods like Xmal [96] and RAMDA [63] are
more time-efficient, as they perform a one-time traversal on the
program graph to capture the utilized API calls.
ML modeling. For each yearly dataset, we divide it into training,
validation, and testing sets with a ratio of 8:1:1. We then calculate
the time required by the selected methods for model training and
testing. Note that we take the early stopping strategy during the
training phase for DL models.

Table 9 details the time taken by these approaches. From a hor-
izontal perspective, we observe that DL techniques consistently
require more time than their traditional ML counterparts. Further-
more, model complexity directly correlates with its training du-
ration. Analyzing longitudinally, there is a clear trend: as years
progress, the time requirements for these methods increase. This

11

Jiahao Liu, Jun Zeng, Fabio Pierazzi, Lorenzo Cavallaro, and Zhenkai Liang

can be attributed to apps growing in complexity and an expand-
ing feature set. When combined with the results of effectiveness
(Sec. 4.3), we note that detection effectiveness does not always
match resource utilization. Striking a balance between effectiveness
and resource efficiency is critical when developing new detectors.

5 FINDINGS
With the empirical investigation and quantitative analysis, we now
draw from our findings to discuss the current state of ML-based
Androidmalware detection and put forth recommendations to guide
future research in this area.
Current ML-based Android malware detectors still face open
challenges. While ML models have been evidently effective in
detecting malware [49, 58, 63, 69, 98], their effectiveness is still
far from satisfactory when faced with challenging scenarios such
as limited data volume, rapid malware evolution, and adversarial
attacks. Given this context, the field presents substantial opportuni-
ties for improvement, particularly in designing robust and practical
detectors for real-world usage.
Feature engineering is a critical step towards improving de-
tection performance. Diverse APK features, such as permissions
and intents, have been leveraged to identify malware [18, 58, 104].
Specifically, these features profile apps and play a pivotal role in
shaping the effectiveness of ML-based detectors. Our analysis re-
veals that feature engineering helps models to discern malicious
patterns when data is limited. However, including more features
randomly does not guarantee enhanced performance and is some-
times counterproductive. Thus, researchers should carefully select
features to improve the effectiveness and efficiency of detectors.
More complexmodels are not a silver bullet in designingmal-
ware detectors. The literature reflects the trend towards employ-
ing more powerful ML models to detect malware [18, 49, 63, 104].
Our experimental analysis reveals that DL-based approaches appear
to be more resilient than traditional ML-based approaches in adapt-
ing to malware evolution. However, it also has been observed that
DL-based approaches are less effective than traditional ML-based
methods when the malware ratio is low. This suggests that utiliz-
ing more complex models is not a universal solution for malware
detection. When introducing a new model to detect malware, it is
crucial to justify its ability to unveil malicious patterns, and the
rationale behind its effectiveness.
Both feature abstraction and models’ defensive mechanism
contribute to detectors’ robustness. Adversarial attacks pose a
substantial challenge to the robustness of Android malware detec-
tion [61, 63]. Our analysis indicates that abstracting features can
help models capture more robust malicious patterns [23]. For in-
stance, MamaDroid [69] abstracts program graphs with family and
package names, enhancing its robustness to JSMA and RI attacks.
Moreover, bolstering the defensive capability of ML models can
further amplify detectors’ reliability and stability [77].
Detection effectiveness does not positively correlate with
efficiency. Through a combined analysis of effectiveness and effi-
ciency, we observe that in Android malware detection, effectiveness
and efficiency do not always positively correlate. A detection tool
that demands more resources does not necessarily deliver enhanced

Static Dynamic Hybrid
Program Analysis

0
10
20
30
40
50
60
70
80
90

Pe
rc

en
ta

ge
 (%

)

81.0%

12.0%
7.0%

DL TML Others
Pattern Discovery

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (%

)

56.6%

39.1%

4.3%

Figure 7: The overall distribution of investigated approaches
from 2011 to 2023.

results. For example, Drebin [18] can achieve competitive detection
performance with a relatively low resource consumption.

6 DISCUSSION
Systematic investigation. To better understand the efforts ded-
icated to Android malware detection, we conduct a systematic
literature review spanning from 2011 to 2023. Aiming for the in-
clusion of a broad range of papers, we follow the search strategies
used in [67, 68]. Specifically, we perform searches in key digital
libraries, such as the ACM Digital Library and IEEE Xplore, us-
ing specific keywords, including android malware detection,
android analysis, and android malware. Then, a careful screen-
ing of titles and introductions is followed to selectively exclude
studies unrelated to our research topic. This meticulous process
ultimately leads to the identification of 258 related papers.

We subsequently categorize these papers based on the program
analysis and pattern discovery techniques they employ. Figure 7
shows the distribution of these techniques. Our analysis reveals
that static analysis is the predominant technique utilized to ex-
tract features from apps, followed by dynamic and hybrid analysis.
For pattern discovery, machine learning, including both traditional
machine learning (TML) and deep learning (DL) models, are exten-
sively used to identify malicious patterns. Particularly notable is
the significant increase in the utilization of static feature extrac-
tion and ML-based techniques in recent years. This evolving trend
highlights the importance of our study, seeking to provide an in-
depth understanding of the contemporary landscape in ML-based
Android malware detection.
Threats to validity. There are two main threats to the valid-
ity of our study. First, our research mainly focuses on investigat-
ing general ML-based Android malware detectors. That it, we do
not include the methods designed to solve a particular challenge
like malware evolution. Specifically, there have been several at-
tempts [30, 76, 102, 110] starting to mitigate the challenges we have
identified. For instance, the recent APIGraph [110] identifies seman-
tically similar API calls to enhance detectors’ robustness against
malware evolution. Integrating this strategy with popular detectors
like Drebin and MamaDroid leads to 5% - 10% detection improve-
ments over a one-year malware evolution. While promising, our
findings still hold, as these improvements are insufficient compared
to the reduction of around 30% observed in our study. It is our aspi-
ration that this study can motivate more researchers to focus on
these challenges and develop effective solutions to mitigate them.

Second, inconsistencies might exist between our evaluation out-
comes and the reported ones due to different settings, such as

12

Unraveling the Key of Machine Learning Solutions for Android Malware Detection

datasets, metrics, and toolchains. To mitigate experimental biases
and provide a fair comparison across diverse approaches, we design
a general-purpose framework. Specifically, we adopt standardized
techniques across all tasks, including feature extraction and ML
modeling. We also incorporate many evaluation scenarios, such as
training data sizes, malware evolution, adversarial attacks, and effi-
ciency, to ensure a comprehensive measurement using our crafted
dataset. It is our hope that the framework can facilitate future work
in ML-based Android malware detection.

7 CONCLUSION
This paper performs the first systematic study of the ML-based An-
droid malware detection literature with empirical and quantitative
analysis. We identify challenges that hinder the systematization in
this field. In response, we design a general-purpose framework for
developing ML-based detection approaches and evaluating their
effectiveness, robustness, and efficiency. By experimentally com-
paring 12 representative approaches, our study paints a holistic
view of the state of ML-based Android malware detection and puts
forth recommendations to guide future research. Committed to the
research community’s growth, all the artifacts (code, data, and logs)
will be released upon acceptance.

REFERENCES
[1] [n. d.]. Androguard. https://github.com/androguard/.
[2] [n. d.]. Angr. https://angr.io/.
[3] [n. d.]. Apktool. https://ibotpeaches.github.io/Apktool/.
[4] [n. d.]. BackSmali. https://github.com/JesusFreke/smali.
[5] [n. d.]. Harly: another Trojan subscriber on Google Play. https://www.kaspersky.

com/blog/harly-trojan-subscriber/45573.
[6] [n. d.]. How Many Apps In Google Play Store? https://www.bankmycell.com/

blog/number-of-google-play-store-apps.
[7] [n. d.]. IDA Pro. https://hex-rays.com/ida-pro/.
[8] [n. d.]. Kharon project. https://cidre.gitlabpages.inria.fr/malware/malware-

website/dataset/malware_DroidKungFu1.html.
[9] [n. d.]. LibRadar. https://github.com/pkumza/LibRadar.
[10] [n. d.]. PyTorch. https://pytorch.org/.
[11] [n. d.]. Share of Android OS of global smartphone shipments.

https://www.statista.com/statistics/236027/global-smartphone-os-market-
share-of-android.

[12] [n. d.]. The mobile malware threat landscape in 2022. https://securelist.com/
mobile-threat-report-2022/108844.

[13] [n. d.]. VirusTotal. https://www.virustotal.com.
[14] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. Droidapiminer: Mining api-

level features for robust malware detection in android. In International ICST
Conference, SecureComm.

[15] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of android apps for the research community. In
MSR.

[16] Muhammad Amin, Babar Shah, Aizaz Sharif, Tamleek Ali, Ki-Il Kim, and Sajid
Anwar. 2022. Android malware detection through generative adversarial net-
works. Emerging Telecommunications Technologies (2022).

[17] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo.
2020. Obfuscapk: An open-source black-box obfuscation tool for Android apps.
SoftwareX (2020).

[18] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket.. In NDSS.

[19] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples.
In ICML.

[20] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout:
analyzing the android permission specification. In CCS.

[21] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau,
and Sebastian Weisgerber. 2016. On demystifying the android application
framework:{Re-Visiting} android permission specification analysis. In Security.

[22] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.
2022. Transcending transcend: Revisiting malware classification in the presence

of concept drift. In SP.
[23] Arjun Nitin Bhagoji, Daniel Cullina, Chawin Sitawarin, and Prateek Mittal. 2018.

Enhancing robustness of machine learning systems via data transformations.
In CISS.

[24] Haipeng Cai. 2020. Assessing and improving malware detection sustainability
through app evolution studies. TOSEM (2020).

[25] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In SP.

[26] Fabrício Ceschin, Marcus Botacin, Albert Bifet, Bernhard Pfahringer, Luiz S
Oliveira, Heitor Murilo Gomes, and André Grégio. 2020. Machine learning (in)
security: A stream of problems. Digital Threats: Research and Practice (2020).

[27] Ngoc-Tu Chau and Souhwan Jung. 2018. Dynamic analysis with Android
container: Challenges and opportunities. Digital Investigation (2018).

[28] Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei
Yang. 2020. DENAS: automated rule generation by knowledge extraction from
neural networks. In ESEC/FSE.

[29] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang
Xiang, and Kui Ren. 2019. Android HIV: A study of repackaging malware for
evading machine-learning detection. TIFS (2019).

[30] Yizheng Chen, Zhoujie Ding, and David Wagner. 2023. Continuous Learning
for Android Malware Detection. arXiv preprint arXiv:2302.04332 (2023).

[31] Francisco Handrick da Costa, Ismael Medeiros, Thales Menezes, João Victor da
Silva, Ingrid Lorraine da Silva, Rodrigo Bonifácio, Krishna Narasimhan, and
Márcio Ribeiro. 2022. Exploring the use of static and dynamic analysis to
improve the performance of the mining sandbox approach for android malware
identification. Journal of Systems and Software (2022).

[32] Nadia Daoudi, Jordan Samhi, Abdoul Kader Kabore, Kevin Allix, Tegawendé F
Bissyandé, and Jacques Klein. 2021. Dexray: a simple, yet effective deep learn-
ing approach to android malware detection based on image representation of
bytecode. In DMLSD.

[33] Yuxin Ding, Xiao Zhang, Jieke Hu, and Wenting Xu. 2020. Android malware
detection method based on bytecode image. AIHC (2020).

[34] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On lightweight
mobile phone application certification. In CCS.

[35] Yujie Fan, Mingxuan Ju, Shifu Hou, Yanfang Ye, Wenqiang Wan, Kui Wang,
Yinming Mei, and Qi Xiong. 2021. Heterogeneous temporal graph transformer:
An intelligent system for evolving android malware detection. In KDD.

[36] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh
Gaur, Mauro Conti, and Muttukrishnan Rajarajan. 2014. Android security: a
survey of issues, malware penetration, and defenses. IEEE communications
surveys & tutorials (2014).

[37] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demystified. In CCS.

[38] Ruitao Feng, Sen Chen, Xiaofei Xie, Lei Ma, Guozhu Meng, Yang Liu, and Shang-
Wei Lin. 2019. Mobidroid: A performance-sensitive malware detection system
on mobile platform. In ICECCS.

[39] Ruitao Feng, Sen Chen, Xiaofei Xie, GuozhuMeng, Shang-Wei Lin, and Yang Liu.
2020. A performance-sensitive malware detection system using deep learning
on mobile devices. TIFS (2020).

[40] Han Gao, Shaoyin Cheng, andWeiming Zhang. 2021. GDroid: Android malware
detection and classification with graph convolutional network. Computers &
Security (2021).

[41] Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2018. Lightweight,
obfuscation-resilient detection and family identification of android malware.
TOSEM (2018).

[42] Ross Girshick. 2015. Fast r-cnn. In ICCV.
[43] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In NIPS.

[44] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In ICLR.

[45] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. 2017. Adversarial examples for malware detection. In ES-
ORICS.

[46] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask
r-cnn. In CVPR.

[47] Ke He and Dong-Seong Kim. 2019. Malware detection with malware images
using deep learning techniques. In TrustCom.

[48] Ping He, Yifan Xia, Xuhong Zhang, and Shouling Ji. 2023. Efficient Query-Based
Attack against ML-Based Android Malware Detection under Zero Knowledge
Setting. In CCS.

[49] Yiling He, Yiping Liu, Lei Wu, Ziqi Yang, Kui Ren, and Zhan Qin. 2022. MsDroid:
Identifying Malicious Snippets for Android Malware Detection. In TDSC.

[50] Geoffrey Hinton. 2009. Deep belief networks. Scholarpedia (2009).
[51] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. 2017. Hin-

droid: An intelligent android malware detection system based on structured
heterogeneous information network. In KDD.

13

https://github.com/androguard/
https://angr.io/
https://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
https://www.kaspersky.com/blog/harly-trojan-subscriber/45573
https://www.kaspersky.com/blog/harly-trojan-subscriber/45573
https://www.bankmycell.com/blog/number-of-google-play-store-apps
https://www.bankmycell.com/blog/number-of-google-play-store-apps
https://hex-rays.com/ida-pro/
https://cidre.gitlabpages.inria.fr/malware/malware-website/dataset/malware_DroidKungFu1.html
https://cidre.gitlabpages.inria.fr/malware/malware-website/dataset/malware_DroidKungFu1.html
https://github.com/pkumza/LibRadar
https://pytorch.org/
https://www.statista.com/statistics/236027/global-smartphone-os-market-share-of-android
https://www.statista.com/statistics/236027/global-smartphone-os-market-share-of-android
https://securelist.com/mobile-threat-report-2022/108844
https://securelist.com/mobile-threat-report-2022/108844
https://www.virustotal.com

Jiahao Liu, Jun Zeng, Fabio Pierazzi, Lorenzo Cavallaro, and Zhenkai Liang

[52] TonTon Hsien-De Huang and Hung-Yu Kao. 2018. R2-d2: Color-inspired convo-
lutional neural network cnn-based android malware detections. In BigData.

[53] Na Huang, Ming Xu, Ning Zheng, Tong Qiao, and Kim-Kwang Raymond Choo.
2019. Deep android malware classification with API-based feature graph. In
TrustCom/BigDataSE.

[54] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. 2018. Black-box
adversarial attacks with limited queries and information. In ICML.

[55] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini,
Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting concept
drift in malware classification models. In Security.

[56] ElMouatez Billah Karbab and Mourad Debbabi. 2021. Petadroid: adaptive an-
droid malware detection using deep learning. In DIMVA.

[57] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga
Mouheb. 2018. MalDozer: Automatic framework for android malware detection
using deep learning. Digital Investigation (2018).

[58] TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. 2018. A
multimodal deep learning method for android malware detection using various
features. In TIFS.

[59] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[60] Tao Lei, Zhan Qin, Zhibo Wang, Qi Li, and Dengpan Ye. 2019. EveDroid: Event-
aware Android malware detection against model degrading for IoT devices.
IoTJ (2019).

[61] Heng Li, Zhang Cheng, Bang Wu, Liheng Yuan, Cuiying Gao, Wei Yuan, and
Xiapu Luo. 2023. Black-box Adversarial Example Attack towards FCG Based
Android Malware Detection under Incomplete Feature Information. In Security.

[62] Heng Li, ShiYao Zhou, Wei Yuan, Jiahuan Li, and Henry Leung. 2019.
Adversarial-example attacks toward android malware detection system. IEEE
Systems Journal (2019).

[63] Heng Li, Shiyao Zhou, Wei Yuan, Xiapu Luo, Cuiying Gao, and Shuiyan Chen.
2021. Robust android malware detection against adversarial example attacks.
In WWW.

[64] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017. Static analysis
of android apps: A systematic literature review. Information and Software
Technology (2017).

[65] Xuezixiang Li, Yu Qu, and Heng Yin. 2021. Palmtree: Learning an assembly
language model for instruction embedding. In CCS.

[66] Yuping Li, Jiyong Jang, Xin Hu, and Xinming Ou. 2017. Android malware clus-
tering through malicious payload mining. In Research in Attacks, Intrusions, and
Defenses: 20th International Symposium, RAID 2017, Atlanta, GA, USA, September
18–20, 2017, Proceedings.

[67] Kaijun Liu, Shengwei Xu, Guoai Xu, Miao Zhang, Dawei Sun, and Haifeng Liu.
2020. A review of android malware detection approaches based on machine
learning. IEEE Access (2020).

[68] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Deep learning
for android malware defenses: a systematic literature review. JACM (2022).

[69] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. Mamadroid: Detecting android
malware by building markov chains of behavioral models. In NDSS.

[70] Alejandro Martín, Félix Fuentes-Hurtado, Valery Naranjo, and David Cama-
cho. 2017. Evolving deep neural networks architectures for android malware
classification. In CEC.

[71] Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang, Suleiman Yerima,
Paul Miller, Sakir Sezer, Yeganeh Safaei, Erik Trickel, Ziming Zhao, AdamDoupé,
et al. 2017. Deep android malware detection. In CODASPY.

[72] Larry R Medsker and LC Jain. 2001. Recurrent neural networks. Design and
Applications (2001).

[73] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
In NIPS.

[74] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
et al. 2016. Reviewer integration and performance measurement for malware
detection. In Detection of Intrusions and Malware, and Vulnerability Assessment:
13th International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016.

[75] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Li-
hui Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning distributed
representations of graphs. arXiv:1707.05005 (2017).

[76] Annamalai Narayanan, Liu Yang, Lihui Chen, and Liu Jinliang. 2016. Adaptive
and scalable android malware detection through online learning. In IJCNN.

[77] Nicolas Papernot, Patrick McDaniel, XiWu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural
networks. In SP.

[78] Naser Peiravian and Xingquan Zhu. 2013. Machine learning for androidmalware
detection using permission and api calls. In ICTAI.

[79] Abdurrahman Pektaş and Tankut Acarman. 2020. Deep learning for effective
Android malware detection using API call graph embeddings. Soft Computing

(2020).
[80] Abdurrahman Pektaş and Tankut Acarman. 2020. Learning to detect Android

malware via opcode sequences. Neurocomputing (2020).
[81] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, Lorenzo

Cavallaro, et al. 2019. TESSERACT: Eliminating experimental bias in malware
classification across space and time. In Security.

[82] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online
learning of social representations. In KDD.

[83] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, and Yang Xiang. 2020.
A survey of android malware detection with deep neural models. CSUR (2020).

[84] Xin Su, Dafang Zhang, Wenjia Li, and Kai Zhao. 2016. A deep learning approach
to android malware feature learning and detection. In Trustcom/BigDataSE.

[85] Bo Sun, Tao Ban, Shun-Chieh Chang, Yeali S Sun, Takeshi Takahashi, and
Daisuke Inoue. 2019. A scalable and accurate feature representation method
for identifying malicious mobile applications. In SAC.

[86] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. 2017.
Revisiting unreasonable effectiveness of data in deep learning era. In CVPR.

[87] Lichao Sun, Zhiqiang Li, Qiben Yan, Witawas Srisa-an, and Yu Pan. 2016. Sig-
PID: significant permission identification for android malware detection. In
MALWARE.

[88] Mingshen Sun, Tao Wei, and John CS Lui. 2016. Taintart: A practical multi-level
information-flow tracking system for android runtime. In CCS.

[89] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
Proceedings of the VLDB Endowment (2011).

[90] Zhaonan Sun, Nawanol Ampornpunt, Manik Varma, and Svn Vishwanathan.
2010. Multiple kernel learning and the SMO algorithm. In NIPS.

[91] Fnu Suya, Jianfeng Chi, David Evans, and Yuan Tian. 2020. Hybrid batch attacks:
Finding black-box adversarial examples with limited queries. In Security.

[92] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and
Albert Cohen. 2018. Tensor comprehensions: Framework-agnostic high-
performance machine learning abstractions. arXiv preprint arXiv:1802.04730
(2018).

[93] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. 2017. Deep
android malware detection and classification. In ICACCI.

[94] Ji Wang, Qi Jing, Jianbo Gao, and Xuanwei Qiu. 2020. SEdroid: A robust Android
malware detector using selective ensemble learning. In WCNC.

[95] Wei Wang, Mengxue Zhao, and Jigang Wang. 2019. Effective android malware
detection with a hybrid model based on deep autoencoder and convolutional
neural network. AIHC (2019).

[96] Bozhi Wu, Sen Chen, Cuiyun Gao, Lingling Fan, Yang Liu, Weiping Wen, and
Michael R Lyu. 2021. Why an android app is classified as malware: Toward
malware classification interpretation. In TOSEM.

[97] Songyang Wu, Pan Wang, Xun Li, and Yong Zhang. 2016. Effective detection of
android malware based on the usage of data flow APIs and machine learning.
Information and software technology (2016).

[98] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin. 2019.
Malscan: Fast market-wide mobile malware scanning by social-network cen-
trality analysis. In ASE.

[99] Yueming Wu, Deqing Zou, Wei Yang, Xiang Li, and Hai Jin. 2021. HomDroid:
detecting Android covert malware by social-network homophily analysis. In
ISSTA.

[100] Xusheng Xiao and Shao Yang. 2019. An image-inspired and cnn-based android
malware detection approach. In ASE.

[101] Jiayun Xu, Yingjiu Li, Robert H Deng, and Ke Xu. 2020. SDAC: A slow-aging
solution for android malware detection using semantic distance based API
clustering. In TDSC.

[102] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. 2019. Droidevolver:
Self-evolving android malware detection system. In EuroS&P.

[103] Ke Xu, Yingjiu Li, and Robert H Deng. 2016. Iccdetector: Icc-based malware
detection on android. TIFS (2016).

[104] Ke Xu, Yingjiu Li, Robert H Deng, and Kai Chen. 2018. Deeprefiner: Multi-layer
android malware detection system applying deep neural networks. In EuroS&P.

[105] Jinpei Yan, Yong Qi, and Qifan Rao. 2018. LSTM-based hierarchical denoising
network for Android malware detection. Security and Communication Networks
(2018).

[106] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,
Xinyu Xing, and Gang Wang. 2021. {CADE}: Detecting and explaining concept
drift samples for security applications. In Security.

[107] Yanfang Ye, Shifu Hou, Lingwei Chen, Jingwei Lei, WenqiangWan, Jiabin Wang,
Qi Xiong, and Fudong Shao. 2019. Out-of-sample node representation learning
for heterogeneous graph in real-time android malware detection. In IJCAI.

[108] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-sec:
deep learning in android malware detection. In SIGCOMM.

[109] Peter Zegzhda, Dmitry Zegzhda, Evgeny Pavlenko, and Gleb Ignatev. 2018.
Applying deep learning techniques for Android malware detection. In ICSIN.

14

Unraveling the Key of Machine Learning Solutions for Android Malware Detection

Table 10: An overview of the 12 representative approaches we selected frommajor venues in security, software engineering, and
machine learning. indicates that the APK file (e.g., AndroidManifest.xml for Manifest) is taken as input in Android malware
detection, while # is the opposite. ✔ and ✘ indicate whether feature engineering is handcrafted using domain knowledge or
learned using representation learning. The effectiveness we present is based on the results reported in the original papers.

Selected
Approach

Publication Input from APK Feature Engineering Dataset Effectiveness

Venue Year Manifest Dex Resource Library Handcrafted Learned Malware Goodware TPR FPR F1

Drebin[18] NDSS 2014 # # ✔ ✘ 5,560 123,453 94% 1% 87%
MamaDroid[69] NDSS 2017 # # # ✔ ✘ 35,493 8,447 97% 2% 96%

Mclaughlin et al.[71] CODASPY 2017 # # # ✘ ✔ 13,637 13,758 95% 1% 97%
HinDroid[51] KDD 2017 # # # ✔ ✘ 1,216 1,118 99% 2% 99%

DeepRefiner[104] EuroS&P 2018 # ✘ ✔ 62,915 47,525 98% 2% 98%
Kim et al.[58] TIFS 2018 # ✔ ✔ 21,260 20,000 99% 1% 99%

MalScan[98] ASE 2019 # # # ✔ ✘ 15,430 15,285 — — 98%
SDAC[101] TDSC 2020 # # # ✔ ✔ 34,497 35,645 98% 1% 99%

HomDroid[99] ISSTA 2021 # # # ✔ ✘ 3,358 4,840 97% 4% 95%
Xmal[96] TOSEM 2021 # # ✔ ✘ 15,570 20,120 98% 2% 98%

RAMDA[63] WWW 2021 # # ✔ ✘ 21,621 36,862 93% 1% 90%
MSDroid[49] TDSC 2022 # # # ✔ ✘ 30,210 51,580 97% 1% 97%

TPR, FPR, and F1 refer to true positive rate, false positive rate, and F1-score. As MalScan is only evaluated on F1, its TPR and FPR are not available.

[110] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing state-of-the-art classifiers
with api semantics to detect evolved android malware. In CCS.

[111] Gang Zhao and Jeff Huang. 2018. Deepsim: deep learning code functional
similarity. In ESEC/FSE.

[112] Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F Bissyandé, Jacques
Klein, and John Grundy. 2021. On the impact of sample duplication in machine-
learning-based android malware detection. TOSEM (2021).

[113] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get off of
my market: detecting malicious apps in official and alternative android markets..
In NDSS.

[114] Dali Zhu, YuchenMa, Tong Xi, and Yiming Zhang. 2019. FSNet: androidmalware
detection with only one feature. In ISCC.

[115] Dali Zhu, Tong Xi, Pengfei Jing, Di Wu, Qing Xia, and Yiming Zhang. 2019. A
transparent and multimodal malware detection method for android apps. In
MSWiM.

[116] Hui-Juan Zhu, Tong-Hai Jiang, Bo Ma, Zhu-Hong You, Wei-Lei Shi, and Li
Cheng. 2018. HEMD: a highly efficient random forest-based malware detection
framework for Android. Neural Computing and Applications (2018).

[117] Hui-Juan Zhu, Liang-Min Wang, Sheng Zhong, Yang Li, and Victor S Sheng.
2021. A hybrid deep network framework for android malware detection. TKDE
(2021).

A APPENDIX
A.1 Feature Database
To streamline the evaluation of different approaches, we establish
a feature database to maintain commonly used features in Android
malware detection. Below, we outline the main features incorpo-
rated into the database, categorizing them for ease of reference.

• Manifest: this category contains features sourced from the An-
droidManifest.xml file, such as hardware components, permis-
sions, intents, and app components.

• DisassembledCode: this category includes the disassembled data
extracted from the DEX file, such as the opcode, operands, and
code strings.

• ProgramGraph: this is mainly used to store the program graph
of the APK file, including the nodes and edges.

• SharedLibrary: this category contains the information of the
shared libraries used by the APK file.

• Others: this category includes other features that are not covered
by the above categories.

Given the structure of the feature database, adding new features
becomes straightforward, facilitating the adaptive evaluation of
diverse approaches. For instance, we can easily implement an add-
on feature extractor and store the derived features in the database,
waiting for use by the preprocessor.

A.2 FrameDroid Implementation
FrameDroid is developed in 17K lines of Python code. To en-
sure consistency and mitigate biases from different feature extrac-
tion toolchains and learning frameworks, we adopt standardized
techniques across all tasks. For feature extraction, we use Andro-
guard [1] to disassemble APK files and derive features such as per-
missions, intents, and program graphs. LibRadar [9] helps in identi-
fying third-party libraries within the applications, while Angr [2]
is used for analyzing native libraries and capturing essential fea-
tures like opcodes and API calls. When it comes to ML models, the
scikit-learn library is our choice for traditional ML algorithms like
SVM, KNN, and RF. On the other hand, for DL architectures such
as CNN, GNN, and AE, we resort to Pytorch [10]. This uniform
approach ensures a balanced evaluation, concentrating purely on
the uniqueness and performance of each method.

A.3 Reproduction of Selected Approaches
Table 10 offers a summary of the 12 representative approaches
we have selected from leading publications in security [18, 49, 58,
69, 71, 101, 104], software engineering [96, 98, 99], and machine
learning [51, 63]. Within this table, we outline the publication de-
tails, input from APK, feature engineering style, dataset statistics,
and their original effectiveness. To better support subsequent re-
search and foster replicability and comparison, we provide the
hyper-parameters of these approaches.
Drebin. We replicate Drebin [18] utilizing a linear SVMwith𝐶 = 1,
and set the maximum number of iterations to 1000.
MamaDroid. MamaDroid [69] has two abstract mode i.e., package
and family. In our experiments, we choose the family mode, as it is
more efficient in terms of time and memory. For the RF classifier,
we employ the default hyper-parameters provided by scikit-learn.

15

Jiahao Liu, Jun Zeng, Fabio Pierazzi, Lorenzo Cavallaro, and Zhenkai Liang

Mclaughlin et al. Mclaughlin et al. [71] is implemented with
a CNN with one single convolutional layer, followed by a max-
pooling layer and a fully connected layer. The convolutional layer
is configured with 32 filters and a kernel size of 225 ∗ 7. The fully
connected layer has 16 neurons. For the evaluation process, a learn-
ing rate of 0.01 and a batch size of 32 are employed. Additionally,
inputs that exceed a length of 600000 are truncated to 60000, and
those that are less than 600000 are padded with zeros.
HinDroid. In implementing HinDroid [51], various meta-path
combinations have been tested.𝐴𝐴𝑇 yields remarkable performance
in our experiments, and hence, is chosen as the meta-path. For
multi-kernel learning, we utilize the 𝑝−𝑛𝑜𝑟𝑚 multi-kernel learning
framework as released by [90], applying the default settings for the
hyper-parameters.
DeepRefiner. As discussed in Section 3.2, DeepRefiner [104] has
two detection layers, and the second layer shows strong detection
capability. In our experiments, we replicate the second LSTM-based
detection layer. The model configuration is as follows: an embed-
ding size of 16 for word embeddings (bytecode instructions), a
two-layer LSTMmodel with an input size of 16, and a hidden size of
64. Batch size is set as 32, and the learning rate is 0.001. The input
sequence has a maximum length of 50, 000. Inputs exceeding this
length are truncated, while shorter inputs are padded with zeros.
Kim et al. Kim et al. [58] initially use a 5 separated MLPs to
process features from five various modalities, each with the same
configuration. Subsequently, a new MLP is introduced to integrate
the learned features from the previous MLPs. The initial five MLPs
have layer configurations of 5000, 2500, and 1000 neurons. The
last MLP is structured with layers containing 1000, 500, 100, and 10
neurons, respectively. A learning rate of 0.001 and a batch size of
32 are used during the training process.
MalScan. The algorithm [98] is replicated with a KNN classifier,
with the number of neighbors set to 3.
SDAC. SDAC [101] initially employsWord2Vec to encode API calls
into vectors. Following this, K-means clustering is applied, and then
these cluster centers are used as anchors to encode features. In the
classification phase, for simplicity, we use a linear SVM instead of
multi-voting SVMs. Additionally, due to K-means’s randomness, the
algorithm is executed 5 times, and the average results are computed.
The size of Word2Vec embedding is set as 10. The chosen number of
clusters is 1000, and the SVM is configured using default parameters,
allowing for 5000 iterations.
HomDroid. The approach [99] is executed using a KNN classifier,
with the number of neighbors set to 1.
Xmal. Xmal [96] is implemented using a 3-layer MLPwith a hidden
size of 64. An attention layer is also incorporated, utilizing an MLP
with a hidden size of 158. The learning rate is set as 0.001, and the
batch size is 20.
RAMDA. RAMDA [63]’s architecture consists of two parts: au-
toencoder and classifier. The encoder and decoder each consist of
a 3-layer MLP with a hidden size of 600. The classifier is a 4-layer
MLP with a hidden size of 600. During the training process, the
autoencoder is trained first, and then the classifier is trained. Con-
figuration parameters are established with a learning rate of 0.001, a
batch size of 64, and epochs set at 20. A pre-defined reconstruction

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Jun Zeng, Chuqi Zhang, and Zhenkai Liang

Algorithm 1:Malware Evolution Evaluation Algorithm
1 Function SingleEvaluation
2 Input: Data of Year D𝑦 , Data of 𝑁 Months {D𝑀1 , ..., D𝑀𝑁 }, Metric 𝑓
3 Output:𝐴𝑈𝑇 (𝑓 , 0) ,𝐴𝑈𝑇 (𝑓 , 𝑁)
4 /* Partition D𝑦 into training, validation, and test according to 8:1:1 */
5 D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙 ,D𝑡𝑒𝑠𝑡 ← PartitionData (𝐷𝑦)
6 Empty List 𝐿 ← []
7 Best Model𝑀𝑦 ← TrainModel (𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙)
8 /* Testing on the current year data */
9 𝐴𝑈𝑇 (𝑓 , 0) ← TestModel (𝑀𝑦 ,D𝑡𝑒𝑠𝑡)

10 /* Testing on the N months data */
11 if {D𝑀1 , ..., , ...,D𝑀𝑁 } ≠ {𝜙 } then
12 foreach Month Data 𝐷 ∈ {D𝑀1 , ...,D𝑀𝑁 } do
13 𝐿← 𝐿 + TestModel (𝑀𝑦 , 𝐷)
14 end foreach
15 𝐴𝑈𝑇 (𝑓 , 𝑁) ← CalculateAUT (𝑓 , 𝐿, 𝑁)
16 end if
17 else
18 𝐴𝑈𝑇 (𝑓 , 𝑁) ← NONE
19 end if

20 Function RollingEvaluation
21 Input: Data of M Years {D𝑌1 , ..., D𝑌𝑀 }, Time Decay 𝑁 , Metric 𝑓
22 Output:𝐴𝑉𝐺_𝐴𝑈𝑇 (𝑓 , 0) ,𝐴𝑉𝐺_𝐴𝑈𝑇 (𝑓 , 𝑁)
23 Empty List 𝐿𝐴𝑈𝑇0 ← []
24 Empty List 𝐿𝐴𝑈𝑇𝑁 ← []
25 foreach Year Data D𝑌𝑖 in {D𝑌1 , ..., D𝑌𝑀 } do
26 /* Select 𝑁 months data */
27 Month List 𝐿𝑚 ← SortDataInMonths (D𝑌𝑖+1 , ...,D𝑌𝑀)
28 if Length (𝐿𝑚 ≥ 𝑁) then
29 𝐴𝑈𝑇 (𝑓 , 0), 𝐴𝑈𝑇 (𝑓 , 𝑁) ←
30 SingleEvaluation (DY⟩ , 𝐿𝑚 [0 : 𝑁], 𝑓)
31 𝐿𝐴𝑈𝑇0 ← 𝐿𝐴𝑈𝑇0 +𝐴𝑈𝑇 (𝑓 , 0)
32 𝐿𝐴𝑈𝑇𝑁 ← 𝐿𝐴𝑈𝑇𝑁 +𝐴𝑈𝑇 (𝑓 , 𝑁)
33 end if
34 else
35 𝐴𝑈𝑇 (𝑓 , 0), _←
36 SingleEvaluation (DY⟩ , {𝜙 }, 𝑓)
37 𝐿𝐴𝑈𝑇0 ← 𝐿𝐴𝑈𝑇0 +𝐴𝑈𝑇 (𝑓 , 0)
38 end if
39 end foreach
40 /* In our experiments, we set N as 3, 6, 9, ..., 24 */
41 𝐴𝑉𝐺_𝐴𝑈𝑇 (𝑓 , 0) ← SUM (L𝐴𝑈𝑇0) / Length(L𝐴𝑈𝑇0)
42 𝐴𝑉𝐺_𝐴𝑈𝑇 (𝑓 , 𝑁) ← SUM (L𝐴𝑈𝑇𝑁) / Length(L𝐴𝑈𝑇𝑁)

A SOURCE CODE ANALYSIS
To gain further insights into the performance of tainting logic
summarization, we present the source code analysis of HAProxy
and Zip. The following code snippet shows how HAProxy invokes
system calls in its proxying workflow.

1 /* HAProxy 1.8.30 */
2 void conn_fd_handler(int fd)
3 {
4 struct connection *conn = fdtab[fd].owner;
5 ...
6 /* SEND: send request to the proxy backend */
7 if (conn->xprt && fd_send_ready(fd) && ...) {
8 conn->mux->send(conn);
9 }
10 /* RECV: receive response from proxy backend */
11 if (conn->xprt && fd_recv_ready(fd) && ...) {
12 conn->mux->recv(conn);
13 }
14 ...
15 return;
16 }

Algorithm 2: PalanTír’s Analysis Procedure Algorithm
1 Function Summarize
2 Input: Initial State 𝑆0 , Function 𝑓 , Execution Context𝐶
3 Output: Return State 𝑆𝑛
4 FuncGraph𝐺 ← 𝑓 .local_graph
5 EntryBlock 𝑏0 ← 𝑓 .entry_block
6 InputStatesMapM ← [𝑏0 ↦→ {𝑆0 }]
7 BlockQueue B ← {𝑏0 }
8 ExitStates E ← {𝜙 }
9 while B ≠ 𝜙 do
10 Block 𝑏 ← PopQueue(B)
11 𝑆𝑖 ←

⋃{𝑆 | 𝑆 ∈ M(𝑏) } // merge input states to 𝑆𝑖
12 𝑆𝑖 ← InitState(𝑆𝑖 , 𝑆𝑖 [0], 𝑆𝑖 [1],𝐶) // init 𝑆𝑖 ’s taint summary
13 /* evaluate statements of block 𝑏 under input state 𝑆𝑖 */
14 𝑆𝑜 ← ProcessStmts(𝑆𝑖 , 𝑏)
15 /* dump block 𝑏’s taint summary to the in-memory database */
16 DumpTaintSummary(𝑆𝑜)
17 if EndWithCall (𝑏) then // 𝑏 ends up with 𝑐𝑎𝑙𝑙 instruction
18 if Callee (b) in tainting scopes P then
19 𝑆𝑜 ← Summarize(𝑆𝑜 ,Callee(𝑏),𝐶 ◦ 𝑏.addr)
20 end if
21 foreach 𝑏𝑠 ∈ 𝐺.Successors(𝑏) do
22 M(𝑏𝑠) ← M(𝑏𝑠) ∪ 𝑆𝑜
23 PushQueue (B, 𝑏𝑠)
24 end foreach
25 end if
26 else if EndWithRet (𝑏) then // 𝑏 ends up with 𝑟𝑒𝑡 instruction
27 E ← E ∪ {𝑆𝑜 }
28 end if
29 else if EndWithJumpOut (𝑏) then // 𝑏 𝑗𝑚𝑝 to another function
30 if Callee (b) in tainting scopes P then
31 𝑆𝑜 ← Summarize(𝑆𝑜 ,Callee(𝑏),𝐶)
32 end if
33 E ← E ∪ {𝑆𝑜 }
34 end if
35 else
36 foreach 𝑏𝑠 ∈ 𝐺.successors(𝑏) do
37 M(𝑏𝑠) ← M(𝑏𝑠) ∪ 𝑆𝑜
38 PushQueue (B, 𝑏𝑠)
39 end foreach
40 end if
41 end while
42 /* merge exit states */
43 𝑆𝑛 ←

⋃{𝑆 | 𝑆 ∈ E}

Although HAProxy has a huge codebase (8,395KB), CFG refine-
ment only focuses on the data transferring functionality (i.e., send-
ing requests to a backend server and receiving responses), as shown
in the conn_fd_handler above. The rest of HAProxy’s functionalities
(e.g., load balancing) will be ignored for taint summarization. To
understand how execution contexts would affect the performance,
we use the following code snippet of Zip:

1 /* Zip 3.0 */
2 uzoff_t flush_block(char buf, ulg stored_len, int eof) {
3 build_tree((tree_desc near *)(&l_desc)); /* 1st callsite */
4 build_tree((tree_desc near *)(&d_desc)); /* 2nd callsite */
5 if (stored_len <= opt_lenb && ...) {
6 copy_block(buf, (unsigned)stored_len, 0);
7 ...
8 } else
9 if (stored_len+4 <= opt_lenb && buf != (char*)NULL) {
10 send_bits((STORED_BLOCK<<1)+eof, 3);
11 copy_block(buf, (unsigned)stored_len, 1);
12 ...
13 } else if (static_lenb == opt_lenb) {
14 send_bits((STATIC_TREES<<1)+eof, 3);
15 compress_block((ct_data near *)static_ltree, (ct_data near

*)static_dtree);
16 ...

Figure 8: The rolling algorithm for evaluating the Android
malware evolution.

loss of 30 is used. To constrain the loss, the positive weights are
defined as 𝜆1 = 10, 𝜆2 = 1, 𝜆3 = 10.
MSDroid. MSDroid [49] is implemented using a 3-layer GNN with
a hidden size of 512. Subsequent to this, a 2-layer fully connected
network with a hidden size of 512 is used to classify the APKs. The
model’s training parameters are set with a learning rate of 0.01 and
a batch size of 64.

A.4 AUT, ASR, and APR
In assessing a classifier’s resilience against temporal degradation,
we employ the Area Under Time (AUT) metric as suggested by [81].
AUT is formally given by:

𝐴𝑈𝑇 (𝑓 , 𝑁) = 1
𝑁 − 1

𝑁−1∑︁
𝑘=1

𝑓 (𝑘 + 1) + 𝑓 (𝑘)
2 ,

where 𝑓 represents the chosen performance metric (such as F1 score
or True Positive Rate) and𝑁 denotes the count ofmalware evolution
period. AUT values range between (0, 1), where 1 indicates the
classifier retains consistent performance across time.

To evaluate a classifier’s robustness against adversarial attacks,
we use two primary metrics: the attack success rate (ASR) and
average perturbation ratio (APR) metrics utilized by [61]. They are

16

Unraveling the Key of Machine Learning Solutions for Android Malware Detection

Table 11: The AUT(TPR, N) and AUT(FRP, N) of the selected approaches over varying time decays. In this analysis, we examine
the shifts during various malware evolution periods: 3, 6, 9, 12, 15, 18, 21, and 24 months.

Approach AUT(TPR,0) AUT(TPR,3) AUT(TPR,6) AUT(TPR,9) AUT(TPR,12) AUT(TPR,15) AUT(TPR,18) AUT(TPR,21) AUT(TPR,24)

Drebin 0.803 0.722(-10.1%) 0.670(-16.5%) 0.601(-25.1%) 0.564(-29.8%) 0.530(-34.0%) 0.508(-36.7%) 0.484(-39.7%) 0.466(-41.9%)
MamaDroid 0.712 0.496(-30.3%) 0.429(-39.7%) 0.365(-48.7%) 0.322(-54.7%) 0.308(-56.7%) 0.282(-60.4%) 0.253(-64.5%) 0.233(-67.2%)

Mclaughlin et al. 0.724 0.583(-19.6%) 0.526(-27.3%) 0.461(-36.4%) 0.410(-43.4%) 0.378(-47.9%) 0.354(-51.2%) 0.327(-54.9%) 0.303(-58.1%)
HinDroid 0.831 0.786(-5.5%) 0.773(-7.0%) 0.729(-12.3%) 0.687(-17.4%) 0.684(-17.8%) 0.674(-19.0%) 0.662(-20.3%) 0.655(-21.2%)

DeepRefiner 0.774 0.590(-23.7%) 0.545(-29.6%) 0.478(-38.3%) 0.427(-44.8%) 0.413(-46.6%) 0.388(-49.9%) 0.362(-53.2%) 0.339(-56.2%)
Kim et al. 0.845 0.760(-10.0%) 0.745(-11.8%) 0.676(-20.0%) 0.619(-26.7%) 0.583(-31.0%) 0.557(-34.0%) 0.524(-38.0%) 0.49(-42.0%)
MalScan 0.800 0.685(-14.4%) 0.650(-18.8%) 0.584(-27.0%) 0.547(-31.6%) 0.519(-35.2%) 0.494(-38.3%) 0.465(-41.8%) 0.439(-45.1%)
SDAC 0.734 0.616(-16.1%) 0.554(-24.5%) 0.495(-32.6%) 0.455(-38.0%) 0.439(-40.2%) 0.416(-43.4%) 0.391(-46.8%) 0.369(-49.7%)

HomDroid 0.836 0.689(-17.5%) 0.651(-22.1%) 0.596(-28.7%) 0.546(-34.6%) 0.515(-38.4%) 0.486(-41.8%) 0.448(-46.4%) 0.422(-49.5%)
Xmal 0.836 0.741(-11.3%) 0.693(-17.1%) 0.617(-26.1%) 0.575(-31.2%) 0.550(-34.2%) 0.523(-37.4%) 0.492(-41.2%) 0.463(-44.6%)

RAMDA 0.876 0.814(-7.0%) 0.775(-11.6%) 0.733(-16.3%) 0.689(-21.3%) 0.673(-23.2%) 0.658(-24.8%) 0.637(-27.2%) 0.613(-30.1%)
MSDroid 0.835 0.755(-9.6%) 0.732(-12.3%) 0.673(-19.4%) 0.635(-24.0%) 0.632(-24.3%) 0.604(-27.6%) 0.569(-31.9%) 0.544(-34.8%)

Approach AUT(FPR,0) AUT(FPR,3) AUT(FPR,6) AUT(FPR,9) AUT(FPR,12) AUT(FPR,15) AUT(FPR,18) AUT(FPR,21) AUT(FPR,24)

Drebin 0.014 0.02(+42.2%) 0.023(+68.2%) 0.024(+71.1%) 0.026(+85.6%) 0.029(+110.1%) 0.030(+115.2%) 0.031(+126.7%) 0.033(+141.2%)
MamaDroid 0.009 0.010(+17.9%) 0.011(+28.4%) 0.010(+20.2%) 0.011(+31.9%) 0.013(+50.5%) 0.013(+54.0%) 0.014(+62.2%) 0.014(+59.9%)

Mclaughlin et al. 0.013 0.010(-19.1%) 0.012(-7.5%) 0.013(+1.9%) 0.015(+14.3%) 0.016(+23.6%) 0.016(+24.4%) 0.016(+22.1%) 0.016(+20.5%)
HinDroid 0.016 0.262(+1491.6%) 0.266(+1516.6%) 0.271(+1548.8%) 0.279(+1599.3%) 0.319(+1839.1%) 0.321(+1853.7%) 0.324(+1873.8%) 0.327(+1890.3%)

DeepRefiner 0.017 0.019(+9.3%) 0.018(+5.9%) 0.019(+7.6%) 0.021(+20.3%) 0.022(+27.2%) 0.022(+28.9%) 0.023(+31.2%) 0.024(+38.7%)
Kim et al. 0.014 0.017(+19.7%) 0.018(+29.8%) 0.018(+31.9%) 0.02(+43.5%) 0.024(+75.9%) 0.026(+84.6%) 0.027(+91.8%) 0.027(+95.4%)
MalScan 0.025 0.029(+17.1%) 0.029(+18.7%) 0.029(+17.9%) 0.031(+24.8%) 0.031(+26.1%) 0.033(+33.0%) 0.035(+40.7%) 0.037(+50.1%)
SDAC 0.024 0.042(+72.1%) 0.050(+104.4%) 0.054(+121.6%) 0.060(+146.5%) 0.064(+159.6%) 0.066(+169.9%) 0.068(+176%) 0.072(+192.3%)

HomDroid 0.014 0.023(+63.2%) 0.024(+66.0%) 0.023(+59.0%) 0.024(+66.0%) 0.026(+78.5%) 0.028(+94.6%) 0.031(+112.7%) 0.032(+123.8%)
Xmal 0.023 0.025(+11.6%) 0.028(+23.5%) 0.027(+20.4%) 0.027(+18.2%) 0.028(+21.7%) 0.028(+25.3%) 0.029(+28.4%) 0.030(+30.6%)

RAMDA 0.054 0.061(+14.0%) 0.069(+27.6%) 0.075(+38.7%) 0.081(+50.0%) 0.09(+67.1%) 0.093(+73.4%) 0.099(+84.2%) 0.104(+93.9%)
MSDroid 0.072 0.078(+8.4%) 0.080(+11.7%) 0.082(+14.5%) 0.085(+18.4%) 0.093(+29.2%) 0.098(+37.3%) 0.106(+47.4%) 0.111(+55.1%)

mathematically defined as:

𝐴𝑆𝑅 =
𝑁𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑁𝑡𝑜𝑡𝑎𝑙
, 𝐴𝑃𝑅 =

𝐹𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑

𝐹𝑡𝑜𝑡𝑎𝑙
.

Here, 𝑁𝑠𝑢𝑐𝑐𝑒𝑠𝑠 refers to the number of adversarial examples that
successfully deceive the classifier. 𝑁𝑡𝑜𝑡𝑎𝑙 represents the entire set
of adversarial samples. Meanwhile, 𝐹𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑 is the number of
input features changed by the adversarial intervention, and 𝐹𝑡𝑜𝑡𝑎𝑙
signifies the total number of features in the input. The ASR values
fall within the interval (0, 1); a value of 1 suggests the classifier is
entirely susceptible to adversarial attacks. Similarly, APR values
lie within (0, 1). A higher APR indicates that evading the classifier
becomes increasingly challenging.

A.5 Malware Evolution Algorithm
To evaluate the evolution of Android malware, we propose a rolling
algorithm, as illustrated in Figure 8. In our experiment, we use the
data from 2011 to 2020, and the malware evolution periods are set
as 3, 6, 9, 12, 15, 18, 21, and 24 months.

A.6 Additional Results
Table 12 presents the detailed results of training data size analysis.
In Sec. 4.3, we normalize the results of the selected approaches
based on the use of 100% training data size for clarity. For instance,
the normalized result for Drebin, using 50% of the training data, is
computed as 0.714

0.722 = 0.988. These results highlight the significant
impact that the volume of data has on the effectiveness of the
selected approaches.

Table 12: The effectiveness of the selected approaches using
different size training data.

Approach

Data Size
100% 50% 10%

Drebin 0.722 0.714 (-1.2%) 0.643 (-10.9%)
MamaDroid 0.661 0.623 (-5.7%) 0.452 (-31.5%)

Mclaughlin et al. 0.714 0.627 (-12.2%) 0.140 (-80.4%)
HinDroid 0.731 0.716 (-2.0%) 0.618 (-15.5%)

DeepRefiner 0.657 0.577 (-12.1%) 0.327 (-50.2%)
Kim et al. 0.782 0.742 (-5.1%) 0.611 (-21.8%)
MalScan 0.684 0.653 (-4.6%) 0.526 (-23.1%)
SDAC 0.522 0.496 (-5.0%) 0.474 (-9.1%)

HomDroid 0.734 0.675 (-8.0%) 0.586 (-20.1%)
Xmal 0.698 0.668 (-4.2%) 0.613 (-12.2%)

RAMDA 0.636 0.614 (-3.4%) 0.547 (-14.0%)
MSDroid 0.648 0.563 (-13.0%) 0.424 (-34.6%)

For the analysis of malware evolution, the results of AUT(TPR, N)
and AUT(FPR, N) are reported in Table 11 (N is also set as 0, 3, 6, 9,
12, 15, 18, 21, and 24 months). We observe that as malware evolution
time increases, there is a consistent decrease in AUT(TPR, N) for the
selected approaches. This trend suggests that as malware evolves,
more malware samples are misclassified as benign. Simultaneously,
an increase in AUT(FPR, N) is noted, indicating that more benign
samples are misclassified as malware. Overall, the performance
of malware detection approaches degrades with the increase of
malware evolution time.

17

	Abstract
	1 Introduction
	2 Machine Learning based Android Malware Detection
	2.1 APK Characterization
	2.2 Feature Representation
	2.3 Machine Learning Modeling

	3 Representative Approach Analysis
	3.1 Selection Criteria
	3.2 Selected Approaches
	3.3 Comparative Study

	4 Quantitative Analysis
	4.1 FrameDroid
	4.2 Dataset
	4.3 Effectiveness
	4.4 Robustness against real-world scenarios
	4.5 Efficiency

	5 Findings
	6 Discussion
	7 Conclusion
	References
	A Appendix
	A.1 Feature Database
	A.2 FrameDroid Implementation
	A.3 Reproduction of Selected Approaches
	A.4 AUT, ASR, and APR
	A.5 Malware Evolution Algorithm
	A.6 Additional Results

